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Introduction
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Scope of Talk

 Infrared satellite sounders have long been part of the satellite
observing system: The first HIRS was launched on NIMBUS-6
in 1975.

 However, the launch of EOS-Aqua AIRS in 2002, marked a
paradigm shift in the use of these data resulting in the infrared
sounders (AIRS, IASI, CrlS) being among the most important
sensors in global data assimilation systems

* For this reason, this talk will focus exclusively on the use of
hyperspectral sounders.
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Scope of Talk

Important issues in the assimilation of infrared radiances are
discussed in other talks in this seminar and so will not be
discussed here in detalil:

Observation errors (including spectrally correlated errors):
Niels Bormann

Instrument characterisation: Dieter Klaes and Bill Bell

Cloudy radiance assimilation:
Jean-Francois Mahfouf, Alan Geer, Jérdme Vidot

Convective scale DA: Thomas Auligné

Principal components and reconstructed radiances:
Marco Matricardi

Surface Emissivity: Fatima Karbou
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The Infrared Spectrum
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The clear sky infrared spectrum Is
dominated by emission and absorption by

atmospheric molecules

Molecules in the atmosphere have @ ‘ @ V]_
energy stored as

rotational,vibrational and electronic V
components ®_’_® 2
The energy states are quantised

and may be transformed through

emission or absorption of V
electromagnetic radiation. This @ ‘—@ 3
results in discrete spectral

emission/absorption features in the | vibrational Modes for CO,
spectrum.

* Inthe microwave these are due to rotational transitions

* Inthe infrared these are rotational and vibrational transitions

« Electronic transitions manifest themselves in the visible and
ultraviolet
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Vibration-Retation Spectrum Ground—v2 transition for CO,
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An example of a vibration-rotation band in the infrared CO, spectrum.
Due to considerations of angular momentum, only changes in the
rotational quantum number, J, of -1,0 or 1 are optically active, producing
the characteristic three branch structure to the band (some linear
molecules have the Q-branch missing).
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An Infrared Spectrum
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Regions of the Infrared Spectrum
Longwave CO, Band

. 4
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Regions of the Infrared Spectrum
The 6.3um Water Band
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Regions of the Infrared Spectrum
Shortwave CO, Band
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Regions of the Infrared Spectrum
Channels Primarily Sensitive to the Surface
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Regions of the Infrared Spectrum
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Trace Gases and RT Challenges

1700 channels affected
by non-LTE during the
day

350 channels In the
main ozone band
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Brightness Temperature (K)
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Regions of the Infrared Spectrum
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Infrared Hyperspectral
Sounders and their
Performance
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Current and Future High-Spectral Resolution
InfraRed Sounders

Instrument/
Satellite/
Launch
AIRS/

Aqua(EOS-PM)/

May 2002
IASI/

\ (@] o]
October 2006
CrlS/

NPP & JPSS/
October 2011

IASI-NG
2021

No. of Spectral Spectral
Channels Range Resolution
2378 650-2760cm™

8461 645-2760cm™

1400 635-2450cm™

16920 645-2760cm™
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|ASI vs HIRS: The Thermal InfraRed
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HIRS vs 1ASI: Temperature Retrieval Accuracy
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HIRS vs |ASI: Response to Important Atmospheric Structure

Height (km)
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Floyd over SW France and SW
England on 12t September 1993.
(Rabier et al., 1996)
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Channel Selection
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Why Select Channels?

The volume of hyperspectral IR data available is such that we do
not have the computational resources to simulate and
assimilate all these data in an operational timeframe

We choose channels that we wish to monitor (often with a view to
future use)

We choose a subset of these channels which we actively
assimilate

The following describes the channel selection performed for IASI
(Collard, 2007, based on Rodgers, 2000)
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|ASI Channel Selection

Pre-screen channels
Ignore channels with large contribution from un-assimilated trace gases.
Use the channel selection method of Rodgers (1996)

Iterative method which adds each channel to the selection based on its
ability to improve a chosen figure of merit (in this case degrees of
freedom for signal).

Determine the channels which contribute most information to a number of
atmospheric states and view angles.

Use multiple runs to reduce the effect of non-linearity and to focus on
particular species.

Impose additional selection criterion: No channel adjacent to one already
chosen may be selected to reduce the impact of inter-channel correlated
errors due to apodisation

Add extra channels that the Rogers method cannot choose

E.g. Cloud detection channels.
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|ASI Channel Selection

Pre-screen channels

Ignore channels with large contribution from un-assimilated trace gases.
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Pre-screened channels

300

280 —

260 —

240 —

Typical Brightness Temperature (K)

220 —

200

* Non-LTE

Water

500

Sept 8-12 2014

1 | 1 1 | 1 | | | | 1
1000 1500 2000 2500
Wavenumber (cm’)

ECMWEF Annual Seminar 2014



|ASI Channel Selection

Iterative method which adds each channel to the selection based on its
ability to improve a chosen figure of merit (in this case degrees of
freedom for signal).
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Figure of merit for channel selection

Rogers (2000) suggests two possible figures of merit for
channel selection:

The degrees of freedom for signal (DFS) for the retrieval is
given by:
DFS=Tr(I-AB-1)

and, the entropy reduction
ER=-%Ln|AB-|

Past experience has shown very similar results from these and
In this study the former is used.
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Efficient calculation of A-matrix

 The Rogers (2000) channel selection technique requires
repeated calculation of the A matrix every time a new channel
IS being tested. Rogers notes that for a diagonal observation
error covariance, the change in A matrix on adding a new
channel i is calculated efficiently thus:

&  h(A h) C
Az‘-lei-l T ; 7. =
1+(Ai-1hi) h; ¢

* where h; is the Jacobian of the ith channel in observation noise-
normalised units.

Sept 8-12 2014 ECMWF Annual Seminar 2014



|ASI Channel Selection

Use multiple runs to reduce the effect of non-linearity and to focus on
particular species.
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Temperature Jacobians of Used Channels
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|ASI Channel Selection

Impose additional selection criterion: No channel adjacent to one already
chosen may be selected to reduce the impact of inter-channel correlated
errors due to apodisation

Sept 8-12 2014 ECMWF Annual Seminar 2014



|ASI Spectral Correlation
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|ASI Spectral Correlation

Expected
correlation
structure from
apodisation of
71 IASI| spectrum

IASI Channel Number
—r
o
o

50

50

Il \\JI 1 ICATLTTL I N] ITNUATIIN ]

Sept 8-12 2014 ECMWF Annual Seminar 2014



Selected Channels (1)

30 channels chosen from 15um CO, band considering
temperature assimilation only

36 channels from 707-760cm-! region — found to be particularly
Important when assimilating AIRS.

252 channels considering temperature and water vapour together

In ECMWEF selection only:

22 channels used for monitoring (HIRS analogues and requested
by CNES)

Another 44 channels in the 707-760cm- region
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Selected Channels (2)
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Improved treatment of correlated error

 In their 2013 paper, Ventress and Dudhia, are able to extend
the calculation of the A matrix — and thus the degrees of
freedom for signal — to the more realistic situation where the
assumed observation error covariance is diagonal but the real
error covariance is correlated.

« This allows one, for example, to explicitly allow for the
correlated observation error term arising from uncertain
molecular abundances and for channels to be chosen that are
more robust against these sources of error.
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Extension to cloudy scenes

« Martinet et al. (2014) has extended the selection of 366 IASI
channels that are currently used to 500, with the other channels
being chosen based on their use in obtaining cloud properties
with particular reference to the AROME regional model.

« A range of situations covering low ligquid clouds, opaqgue ice clouds and
semi-transparent ice clouds were considered with RTTOV-CLD used to
generate the spectra.

« Migliorini is also considering channel selection in cloudy
situations, with particular focus on correlated observation errors
and a flow-dependent estimate of forecast uncertainty.
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Extension to reconstructed radiances.

« As part of her thesis work, Fiona Hilton has considered channel
selection In the context of reconstructed radiances.

* The transformation of instrument noise into reconstructed
radiances will result in a singular R-matrix. We therefore need
to consider whether the R-matrix associated with a particular
channel selection is suitably well-conditioned.
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More efficient ways of representing the spectrum

 Itis often pointed out that channel selection where we select
~5-10% of the channels for monitoring and even fewer for
assimilation is an inefficient way of representing the
hyperspectral infrared spectrum.

* More sophisticated methods such as Principal Component
Analysis and Reconstructed Radiances will be the subject of
the following talk by Marco Matricardi.
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O-B Comparisons
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Jacobians of 15pm CO, Band
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First-Guess Departure Biases in Water Band
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Clouds
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Dealing with Cloud

Cloud can be treated In five ways:

1) Avoid all FOVs with cloud (“hole hunting”)

2) Only assimilate channels that are insensitive to
cloud

3) Correct the observations to remove the effect of
clouds (“cloud-clearing”)

4) Explicitly model the effect of cloud on the radiances
either during pre-processing or as a sink variable.
But DO NOT assimilate the cloud properties.

5) Initialise model cloud variables from the cloudy
radiances.

Sept 8-12 2014 ECMWF Annual Seminar 2014



Sensitive areas and cloud cover
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Eyre and Menzel,

1989
Cloud Detection in the GSI
« Assume the cloud is a single Sy e G :
layer at pressure P, and with unit | |
emissivity and coverage within § Rovercast(VsPe) Reear(V,Pe)
the FOV, N.. | |
.+ 0<N, <1 I S — .
« P_is below the tropopause and N, 1-N¢ |

above the ground | I |
« Find P, and N, so that the RMS ’
deviation, J(N_,P.), of the §
calculated cloud from the model g
(over a number of channels) is R
minimized. i g@
 Remove all channels that would |
be radiatively affected by this
cloud.

Raia(V.P)=NcRovercast(V:P) +(1-Nc) Rejear(V:Po) o(v) is the assumed observation error for
channel v

- i 2 This calculation should be done in
JNGP)=2V (Reig(V.Po)-Rops(V)/O(V)) radiance, not brightness temperature

space.
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Eyre and Menzel,

1989
Cloud Detection in the GSI
« Assume the cloud is a single s~~~ Zh "~~~ """~~~ J :
layer at pressure P, and with unit | i
emissivity and coverage within i ﬁ Rovercast(VsPe) W Reear(V,Pe)
the FOV, N |
+ 0=N.=1Thomas Auligne’ s MMR cloud | 1
. P, is belo Ne |
above the d€t€Ction schemeisa | |
+ Fnd P2t generalisation of this method to
eviation,
calculated A M@l auds:
0] :
Sn?;ﬁrrn?zggm er of channels) is @
 Remove all channels that would %

be radiatively affected by this

cloud.
Raia(V,Pe)=NcRovercast(V:P) (1-Ne) Rejear(V.Pe) | 6(v) is the assumed observation error for
channelv |
I(NePe)=2V (RaalV,Pe)Raps(v)I0(v))* Lhcjlisaﬁig,ukg’zobr:'ig2?#égsbteeﬂ‘lopne?'z:1?u re
space.
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Cloud detection scheme for Advanced Sounders

A non-linear pattern recognition algorithm is applied to
departures of the observed radiance spectra from a
computed clear-sky background spectra.

£ AIRS channel 226 at 13.5micro
(peak about 600hPa)

. -1 The large number of AIRS or IASI channels | &
; -l allows improved measurement of the

T cloud-top height compared to HIRS

AIRS channel 787 at 11.0 micron
. (surface sensing window channel)

200

Fod unaffected
o channels
‘; assimilated

________

pressure (hPa)

Ll SRS n n | n n L L | n n L n |
0.00 0.05 .10 0.15 0.zZ0
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Cloud Cleared Radiances

Cloud Cleared Radiances derive a
single “clear” spectrum from an array
of partially cloudy fields-of-view (9 in
the case of AIRS and CrlS)

Needs to be initialised with a high quality first guess,
usually either a regression from AMSU-A radiances or

an NWP model field.

Can calculate a noise amplification factor which is
the basis of the QC flag
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The reconstructed clear-column radiances will

be

treated as other IR clear-sky radiances when being

assimilated except for amplifying the observation error

by a factor of A =
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Cloud-Cleared Radiances

AIRS Ch. 221. QC Flag Used. No Cloud Detection

& » . T

R

T

Sept 8-12 2014 ECMWF Annual Seminar 2014



Cloud Cleared Radiances

AIRS Ch. 221. QC Flag Used. With Cloud Detection
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Impact of CCRs on Forecast?
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Simultaneous Analysis of Cloud Properties
(Tony McNally)

Derive a cloud-top pressure (CTP) and cloud fraction from
observed radiances with a 2-D least-squares fit in the screening
run

For overcast FOVs use all channels (that are currently used for
clear sky case)

This has the advantage of reducing the degrees of freedom

For other FOVs revert to operational cloud-detection scheme to
identify clear channels

Assimilate these radiances with CTP as a sink variable
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Using data In cloudy areas

Clear data coverage of mid/lower
tropospheric sounding radiances:

IAS| 434 (METOP-A)
AIRS 355 (AQUA)
HIRS 7 (NOAA-17 / METOP-A)

Colour indicates first guess departure

Additional overcast locations where
cloudy radiance analysis fills gaps due
to cloud detection rejections:

IASI 434 (METOP-A)
AIRS 355 (AQUA)
HIRS 7 (NOAA-17 / METOP-A)

First guess departures similar to clear
data after QC of complex clouds

Tony McNally
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Temperature increments at the cloud top

ODE: ezzz/CCMA
S0L: /homedrdidam/ ODE_SGLsicld sql (cldptop_2@atovs : 2710 observal tions)

g0e M

B0°N-—

3 __:_:j-_:.-‘-' 5
el i

0=

Tony McNally

Cell of very high
overcast clouds off

100 140 ZE0 340 420 ana Sa0 BEQ 740 i

30

All channels collapse to near delta-
functions at the cloud top giving very
high vertical resolution temperature
Increments just above the diagnosed
cloud

704

804

Sept 8-12 2014 ECMWF Annual Seminat

the coast of PNG

|

S04

red=ops+ cloudy IR

o ] £ 5



Direct Assimilation of IR Cloudy Radiances

* The direct use of the cloudy information in IR
cloudy radiances is the ultimate aim. A number of
che_ntres are starting to get encouraging results in
this area.

 The main challenges are:

* Non-linearity of the observation operator (particularly
for opaque clouds where the Jacobian is essentially a
delta-function at the cloud top).

* Radiative transfer accuracy
 Partially cloudy scenes

* Propagation of cloudy errors into other fields (such as
temperature).
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Direct Assimilation of IR Cloudy Radiances

« Pauline Martinet is exploring the direct assimilation of IR
radiances in the AROME model. Analyses are limited to
schemes where the model and observations agree that the
cloud field is homogeneous. Some Iinitial encouraging results.

« Stefano Migliorini has shown positive impact through the
assimilation of cloudy radiances in the ECMWF IFS. To
minimize the risk of cloudy signal adversely affecting the
temperature field, this work focuses on the use of humidity-
sensitive channels.
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Humidity Assimilation
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Humidity assimilation (1)

Some centres have demonstrated positive impact from
assimilating H20O channels (with reduced weight) to the
analysis and 1-2 day forecast

NWP models have a hard time keeping impact of
assimilation after 1-2 days

Ambiguity with humidity Jacobians - the water vapor (WV)
channels have strong sensitivity to humidity and
temperature

Humidity Jacobians are non-linear; i.e., the Jacobians
themselves are a function of the humidity field
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Humidity assimilation (2)

Large bias relative to NWP model (model bias). Bias
correction algorithms remove this bias.

RT model errors/biases may contribute as well.

Variational bias correction algorithms need to have
suitable anchoring observations.

Above issues are mitigated through inflated observation
errors; reduced number of channels, tight QC and explicit
representation of correlated observation errors.

NCEP use tight QC (~1K) but increase data useage
through re-evaluation of QC every outer loop.

The Met Office explicitly specifies the correlated
observation error for IASI (Bormann talk).
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Overview of IR Sounder
Performance in NWP
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Global NWP Data Impacts

Total observation impacts in 1 cycle [moist total energy.Jkg] Observation impact per 1 observation [moist total energy,J'kg]
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For the total impact, 1: aircraft, 2: AMSU-A, 3: radiosonde, 4: IASI, 5: GPSRO
For impact per 1 obs., 1: radiosonde, 2: GPSRO, 3: aircraft, 4: Scattrometer wind, 5: marine

surface observation

sl Total impact of AIRS (Moist,J /kg) o Total impact of IASI {Meist,J /kq)
G0N 60N

50N'; sond

EO - Eo -

305 30

605 g 605

s BOF 190F 180 120 BOW 9057

—0.01 —0.008 —0.006 —0.004 —0,002 0.002 0004 0006 6,008 0.0 oDl 0005 —0.008 —0.004 —0.003 0002 D004 0006 000F D01

ECMWEF A | Semi -
nnual ol Sept 8-12 2014



|ASI Forecast Scores: 500hPa Geopot. AC
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Global NWP Data Impacts: NRL

NAVGEM Observation Sensitivity
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Global NWP Data Impacts: Météo-France

Averaged Linear Estimate of Impact (Forecast Error) in percentage
XPID: 56FR / Trajectories: both (an+bg)
Base: 2013/09/01 @ 00 - 2013/09/30 @ 18 : 120 cycles.
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Global NWP Data Impacts:

Met Office
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Conclusions
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Conclusions

« Since the launch of AIRS in 2002, hyperspectral infrared
sounders have become some of the leading contributors to
forecast accuracy.

* Most NWP centres assimilate a large number of 15um CO,
channels with a smaller number of humidity and ozone
channels.

« Areas of study include:

» Use of cloudy radiances

« Efficient use of information (channel selection, PCs, Reconstructed
Radiances)

« Specification of observation errors (including correlations).
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