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Convective Scale NWP: Why Bother? (© Barker)

10% represents > 5-10 years lead over global model

Source: Dale Barker (Met Office)

Percentage benefit wrt UK Index
(forecast skill for surface weather)

Local and severe weather 

• Moist processes

• Clouds, fog

• Visibility

• Precipitation

• Orographic effects



Smaller spatial and temporal scales

• Rapid Update Cycling (hourly or sub-hourly)

• More timely use of satellite data (short cut-off)

• Quick turnaround (4DVar penalized)

• Uncertainties and predictability 
(probabilistic forecasts)

Thinning and/or super-obbing

• Ability to observe small structures

• Correlated errors (measure, processing, representativeness)

• “Big Data” paradigm

Cycling requirements

• Wait for valuable observations

• Wait for model spin-up to settle

• Hurry to get skillful forecast

Convective Scale DA: Spatial and Temporal Needs
Ensemble Mean Visibility

Ensemble Probability (vis<1km)

Source: Dale Barker (Met Office)



Convective Scale Initialization: Two Approaches
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MADCast: Simulated Observation Experiment 

Vertical Cross Section
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Multi-sensor synergistic

analysis of cloud fraction

(GOES, AIRS, IASI, CrIS, MODIS)

Vertical Cross Section

MADCast: Real Observation Experiment 



Observations
GOES Imager

Forecast (1h)
Cloud Fraction

Fort Peck

Bondville

Desert Rock

Sioux Falls



observation
- Uses METAR, satellite, radar, lightning data
- Updates RR 1h-fcst RR hydrometeor, water vapor fields
- Generates latent heating from radar and lightning data

Source: Ming Hu (NOAA)

Rapid Refresh: Cloud Analysis Schematic



• Real Observations

• IASI: Guidard et al. (QJRMS 2011). AROME. 

• TRMM Microwave Imager (TMI):
Aonashi and Eito (JMSJapan, 2011). Displaced MLEF. JMANHM.

• MSG SEVIRI: Stengel et al. (QJRMS 2010). 4DVar HIRLAM. Schomburg and 

Schraff (QJRMS 2013). LETKF COSMO (retrieved cloud top).

Barker (WSDA 2014). AMSU-B/MHS. 3DVar UKV

• OSSEs

• GOES-R: Otkin (JGR 2010), 

Jones et al. (MWR, 2014). EnKF DART.

• MTG IRS: Guedj (EUMETSAT). Correlated obs error.

• GPM: Chambon et al. (QJRMS 2013). MLEF.

• GLM: Stefanescu et al. 1DVar+3DVar assimilation of 

total lightning. WRFDA.

Convective Scale DA: Satellite Observations

Source: T. Montmerle

(Météo-France)



Observation

Model Guess

AIRS Channel #787

All-Sky Radiances: Challenges

Method

State augmentation to include model cloud 

microphysics variables in the analysis (qc, qi, …)

Goals

• Fit observations at initial time

• Sustain cloud increments in forecast

All-sky radiances

• Assimilate cloud-and-precip-affected radiances

• Accuracy and efficiency of radiative transfer

• Non-linear observation operators 

• Jacobian calculation: modified base state

Satellite radiances sensitive to land surface

• Forecast needed near populated areas

• Improved modeling of Tskin and emissivity 

over land, snow, sea-ice

• Tskin introduced as a sink variable



Satellite Field of View (FoV): Interpolation

• Calculate polygons (ellipses)

• List model grid points inside ellipse

• Use average input for RTM

• Currently testing for AIRS and IASI



Satellite Field of View (FoV): Interpolation

Duffourg et al. (2010)



Huber Norm: estimated via Iterated Reweighted Least Square (IRLS) 

= reweighting of observations according to OmF at each outer-loop

Figure from Fisher (2008)

Innovations

Normalized Obs Weight

Innovations

Raw Innovations

Normalized Innovations

All-sky Radiances: Observation Error Covariances



All-sky Radiances: Observation Error Covariances

AIRS Diagnostic R Matrix

Source: Weston (2011)

Correlated errors 

(esp. for moisture channels)

At least partly due to

representativeness error

(Waller et al. 2014) 
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Towards Cloudy Radiance Assimilation

Simulated mismatch in resolution:

(Daley 1993, Liu and Rabier 2002, 

Waller et al. 2014)

- Perfect observations (high resolution)

- Perfect Background (lower resolution)

Innovations

Background

Representativeness Error
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Towards Cloudy Radiance Assimilation

Modified interpolation scheme:

1. Automatic detection of sharp gradients 

2. New “proximity” for interpolation

Innovations

Background

New Innovations

Representativeness Error



Representativeness Error: Wavelet Scale Matching



Obs. Operator: Tangent-Linear Approximation

Source: Fabry and Sun (2010)



Obs. Operator: Tangent-Linear Approximation

Source: Wang et al. (2012)

k = 1.0

k = 0.1

k = 0.01

k = 0.0001

Similar for U, V, T Similar for W



Obs. Operator: Tangent-Linear Approximation

Source: Wang et al. (2012)

k = 0.1

k = 0.01

k = 0.0001
Similar for U, V, T Similar for W



No cloud in FG

O-B

TLM

Non-linear Perturbation: H(xt) – H(xb)

Tangent-linear Perturbation: Ĥ(xt-xb)

Cloud in FG

Obs. Operator: Tangent-Linear Approximation



Cost Function

First Guess Second Guess Third Guess

First Analysis Second Analysis

AIRS Window Channel #787

Middle Loop

Linear Jo

Non-linear Jo

Inner Iterations

C
o

st
 F

u
n

ct
io

n



Middle Loop: Fit to Observations

100 inner iterations

50 inner iterations

20 inner iterations

Iteration
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First Guess Second Guess Third Guess

Observation

Update of

qcloud, qice in WRF

ObservationsAIRS Window Channel #787



Cloud Analysis: Impact on Forecast

Univariate
Analysis of

Cloud parameters

NWP

model

Background Error Covariances are required to 

update observed and unobserved model variables 

in a balanced way



BE Covariances: Raw Ensemble Auto-Correlations

Horizontal autocorrelations (mid-troposphere)

RHT

• Heterogeneous

• Anistropic

• Flow dependent

• Wide range of spatio-temporal scales



BE Covariances: Impact of Model Resolution

Source: Benjamin Ménétrier



Ménétrier et al. (2011)

BE Covariances: Impact of Model Resolution

q at 945hPa

Variance

Length-scale

and

LCH tensor



BE Covariances: Variance Filtering

Ménétrier et al. (2014)



Michel et al. (2011)

Background Error Covariances: Masked Statistics

Vertical

auto-correlation

Horizontal

lengthscale



Background Error Covariances: Masked Statistics

Montmerle and Berre (2010), Ménétrier and Montmerle (2011), Brousseau et al. (2012)

Fraction of explained variance for q

No Rain



BE Covariances: Balance

Balanced

Unbalanced

Hydrostatic balance

Geostrophic balance

Source: Ross Bannister (NCEO, Reading)

Horizontal scale (multiples of 1.5km grid box)
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Also Betra-Carvalho et al. (QJRMS, 2012)

• Complex, non-linear, flow-dependent 

relationship b/w model variables

• Traditional balance not applicable 

at high-resolution



Mini-4DVar (10min)



Mini-4DVar (5min)



Mini-4DVar (1min)



Hybrid Ensemble/Variational Data Assimilation

Ensemble Covariance included  in 3D/ 4DVar via state augmentat ion

(Lorenc 2003, Buehner 2005, Wang et al. 2008, Fairbairn et al., 2012) 

Stationary multivariate 

covariance model 

including clouds

Localized [+ filtered]

ensemble covariance



Background Error Covariances: Masked Statistics

Source: Benjamin Ménétrier
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Background Errors: Non-Gaussianity

Source: Raphael Lagrand (Météo-France)

Anderson-Darling distance to a Gaussian PDF



Source: Raphael Lagrand (Météo-France)

Background Errors: Non-Gaussianity

3h fcst

6h fcst

Analysis

Temperature

Specif Hum

Divergence

Vorticity



Current

State
Forecast

ObservationGrid

Warping

Displacement Analysis: Grid Warping

Model



Displacement analysis in WRF (dWRF)

Observation

Model

Innovation

• Hurricane Katrina OSSE

• Synthetic observations (TPW)



Displacement analysis in WRF (dWRF)

Observation

Model

Innovation

Assimilation system can operate in two modes:

• Standard (i.e. additive increments) 

• Displacement

Displacement

Nehrkorn et al. 

(MWR 2013, 2014)



Initial time:

08-28-05 06:00:00z

Vortex displaced 

forward along track



18 Hour forecast time:

08-29-05 00:00:00z

18 hours later vortex 

maintains forward position



dWRF DA: GOES All-Sky Radiances

Background Departures

Background Departures

Residual Departures

dWRF
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Displacement: BE Covariances

RH-qc

CONTROL

DISPLACED



Initialization: Unbalanced analysis

• DFI, Incremental DFI, Diabatic DFI

• IAU, 4DIAU

• 4DVar, 4DEnVar

• Resolution gap b/w DA and model

Convective Scale: Model Spin-up

Source: Craig Schwartz



Convective Scale: Model Error

Cintineo et al. (2014)

GOES-13 10.7μm



Posselt and Vukicevic. (2010)

Convective Scale: Model Error



Posselt and Vukicevic. (2010)

Convective Scale: Model Error



Conclusions

Advances

• Include cloud parameters in analysis state

• Multiple re-linearizations of observation operator

• Improved flow-dependent multivariate BE covariances

• Increasingly relying on information from (filtered) ensembles 

• Displacement analysis for coherent features

Question

• At convective scale, will current DA methods be defeated 

by non-linearities (before we reach retirement age)???



Perspectives

Coupled Assimilation

• Land surface (temperature and soil moisture)

• Ocean (SST, mixing)

• Hydrology (run-off)

• Aerosols (visibility)

• Composition (air quality, photolysis)

Model error

• Accurately represent model error 

(weak constraint, stochastic model processes, …)

Interaction with larger scales

• Multi-scale covariances  DA across scales
(Jk Constraint, Lateral Boundary Conditions)



• New Global model

• Nonhydrostatic

• Voronoi meshes

• Variable resolution

• WRF, CAM, GFS physics

• Scalable code

• MPAS-A (NCAR)

• MPAS-O and MPAS-LI 
(LANL)

http://mpas-dev.github.io

Source: Bill Skamarock



3 km global MPAS-A simulation

2010-10-23 init

Cold-pools 

from 

isolated storms 

ahead of the 

cold front

splitting 

supercell

thunderstorms

Source: Bill Skamarock
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The End


