
RECENT PERFORMANCE OF NICAM ON THE K-COMPUTER	

 AND ACTIVITIES TOWARDS POST-PETASCALE COMPUTING	

H.YASHIRO	

RIKEN/Advanced Institute of Computational Science, Kobe, JAPAN	

NICAM	

•  Non-hydrostatic Icosahedral ���
Atmospheric Model (NICAM)	

•  Development was started since 2000���
Tomita and Satoh (2005, Fluid Dyn. Res.), Satoh et al. (2008, J. Comp. Phys.)	

•  First global dx=3.5km run in 2004 using the Earth Simulator���
Tomita et al. (2005, Geophys. Res. Lett.), Miura et al. (2007, Science)	

•  Main developers: JAMSTEC, U. of Tokyo, RIKEN/AICS	

•  International collaboration ���
Athena project (2009-10): COLA, NICS, ECMWF, JAMSTEC, Univ. of Tokyo	

The K computer	

•  Rmax = 10.51PFLOPs (93% efficiency)	

•  Won the TOP500 list twice (2011)	

•  Two Gordon Bell prize	

•  Shared use started on September, 2012	

•  CPU: Fujitsu SPARC64VIIIfx (128GFlops, 8core)	

•  2FMA, 2SIMD	

•  1PB memory, 64GB/s bandwidth (B/F=0.5)	

•  82944 nodes, 6D mesh/torus network	

•  10PB local file system, 30PB storage	

Notable features of K computer	

•  Resiliency	

•  LINPACK ran during 29hour 	

•  160k core x 9hour NICAM simulation x 24 times : we met job failure only once!	

•  Why?	

•  Fujitsu has a history of mainframe 	

•  CPU is kept at a lower temperature, strong error detection & retry system	

•  Duplicated 3D torus network (ToFu)	

•  File stage-in/out system	

•  Strategy of thread parallelism	

•  Fast hardware barrier of the threads, shared L2 cache	

•  Strong hardware prefetching	

•  Reasonable B/F ratio(0.5), extended floating-point register(256word)	

•  Compiler-aided auto parallelization	

•  Small overhead of thread folk/join: It’s OK to apply at Inner loop	

➡  8 cores work just like 1 CPU	

Main Memory

B/F bottleneck

L2 cache

C
O

R
E

L
1

C
O

R
E

C
O

R
E

L
1

L
1

C
O

R
E

L
1

・・・

Porting NICAM to K	

• Optimization starts from 2010	

•  Porting from vector machine (Earth Simulator) to scalar machine	

•  MPI parallelization was OK���

 : NICAM have been designed for massive parallel machine	

•  Single node performance efficiency 	

•  Cache optimization applied to some stencil operators���

 : efficiency became up to 10-18% of peak in each kernel	

•  But...	

•  Total performance efficiency improved only ~1% (of peak)	

•  Amdahl’s law	

•  “Flat profile” : difficult to find hotspots	

•  Execution setting on K computer	

•  MPI(inter-node) and auto parallelization(intra-node)	

•  One process per one node	

•  Every process input/output distributed file from/to local file system	

• Data structure of NICAM	

•  (ij,k,l) = horizontal grid, vertical grid, region	

•  Thread parallelization is applied to k-loop	

•  We neither use OpenMP nor apply cache blocking���
: Large innermost ij-loop was efficient in the many case	

Vector-like thread parallelization of K aided our smooth porting	

Porting NICAM to K	

Stencil kernel optimization of NICAM	

 do l = 1, ADM_lall !
 do k = ADM_kmin, ADM_kmax !
 do n = OPRT_nstart, OPRT_nend !
 ij = n !
 ip1j = n + 1 !
 ijp1 = n + ADM_gall_1d !
 ip1jp1 = n + 1 + ADM_gall_1d !
 im1j = n - 1 !
 ijm1 = n - ADM_gall_1d !
 im1jm1 = n - 1 - ADM_gall_1d !
!
 scl(n,k,l) = cdiv(0,n,l,1) * vx(ij ,k,l) & !
 + cdiv(1,n,l,1) * vx(ip1j ,k,l) & !
 + cdiv(2,n,l,1) * vx(ip1jp1,k,l) & !
 + cdiv(3,n,l,1) * vx(ijp1 ,k,l) & !
 + cdiv(4,n,l,1) * vx(im1j ,k,l) & !
 + cdiv(5,n,l,1) * vx(im1jm1,k,l) & !
 + cdiv(6,n,l,1) * vx(ijm1 ,k,l) & !
 + cdiv(0,n,l,2) * vy(ij ,k,l) & !
 + cdiv(1,n,l,2) * vy(ip1j ,k,l) & !
 + cdiv(2,n,l,2) * vy(ip1jp1,k,l) & !
 + cdiv(3,n,l,2) * vy(ijp1 ,k,l) & !
 + cdiv(4,n,l,2) * vy(im1j ,k,l) & !
 + cdiv(5,n,l,2) * vy(im1jm1,k,l) & !
 + cdiv(6,n,l,2) * vy(ijm1 ,k,l) & !
 + cdiv(0,n,l,3) * vz(ij ,k,l) & !
 + cdiv(1,n,l,3) * vz(ip1j ,k,l) & !
 + cdiv(2,n,l,3) * vz(ip1jp1,k,l) & !
 + cdiv(3,n,l,3) * vz(ijp1 ,k,l) & !
 + cdiv(4,n,l,3) * vz(im1j ,k,l) & !
 + cdiv(5,n,l,3) * vz(im1jm1,k,l) & !
 + cdiv(6,n,l,3) * vz(ijm1 ,k,l) !
 enddo !
 enddo !
 enddo !

Coefficients:	

4th dimension→1st (=SoA→AoS)���

: efficient use of cache line 	

Modification of data structure was
very limited. (Only for this case)	

K-specific optimization was minor	

Where is the problem?	

We don't know
which type of coding

makes slow...

Weather/Climate
scientists & students

Computer
scientists

Optimization staff

There's no hot-spot...

It's difficult to find the target
in the huge application code !

Labor-intensive method	

• Detailed check of performance	

•  Insert FLOP & time counter into the hundreds of sections	

•  List up the "time-wasting" sections	

•  Less computation, more memory transfer���
: mainly related to array copy, array initialization, tentative array
generation in the subroutine call	

•  The loops which the compiler gives up���
: “if” branch in innermost loop, complex loop structure	

➡ Reduce intermediate arrays, avoid unnecessary zero-filling, ���
and turn the conditional branches out of loops	

•  Our lesson: the compiler is not so intelligent as we have expected.	

•  Complier-friendly code and readable code are compatible: simple is best	

Efficiency of NICAM on K Computer	

•  Performance efficiency (per peak)	

•  Just after porting from Earth Simulator : ~4%	

•  Cache optimization to stencil operators : ~5%	

•  Cleaning the time-wasting codes : ~7%	

•  Modify conditional branches, refactoring : ~10%	

Dynamics	

Physics	

Num. filter	

HEVI	

Tracer advection	

other	

Cloud Microphysics	

Radiation	

PBL	

other	

7%	
13%	

6%	

8%	

5%	

6%	

6%	

17%	

Physics
 Dynamics

Ratio in the elapsed time	

Efficiency/PEAK	

Weak scaling test	

•  Same problem size per node, same steps	

•  Full configuration / full components	

•  Realistic boundary / initial data set	

•  Good scalability up to 81920node x 8threads with 0.9PFLOPS	

0

2

4

6

8

10

12

1

3

5

7

9

11

13

40 160 640 2560 10240 40960 163840 655360

Pe
rf
or
m
an
ce
 e
ffi
ci
ne
cy
 [%
]

El
ap
se
d
tim
e
[s
ec
/s
te
p]

Number of cores Elapsed time Efficinecy

GL09RL02z94
14km

GL11RL04z94
3.5km

GL13RL06z94
870m

Strong scaling test	

•  14km horizontal, 38layers, total problem size is fixed	

•  The efficiency decreases rapidly���

: the relative ratio of the communication time increases	

10

100

1,000

100 1000 10000 100000 1000000

(s
im
ul
at
io
n
tim
e)
/(
re
al
 ti
m
e)

[d
ay
/d
ay
]

Number of cores

13day/real-day
80node(640core)

233day/real-day
2560node(20480core)

Additional topics	

•  Other features of NICAM which contributed to performance !
•  Simple, less memory!

•  Hexagonal A-grid structure for horizontal���
 : Less working array and less operation for averaging values	

•  Structured: continuous memory access	

•  Distrubuted file I/O !
•  Maximize file I/O throughput	

•  But…	

•  Number of files are increasing and increasing!	

•  Post-process work takes long time	

•  MPI-IO w/ compression is better choice in the future?	

Science target & Model development	

Resolution�

Ensemble �

Duration� Complexity�
Computer resources���

with good computational
efficiency	

Long-term AMIP run	

Global sub-km experiment	

Initial state ensemble	

Ens.-based data assimilation	

Aerosol/Chemistry	

Binned cloud microphysics	

Atmos.-Ocean coupling	

Global Sub-km experiment	

•  dx=870m, 97layers, 20480PE	

•  63billion grids, dt=2sec	

•  24hour simulation = 700EFLOP	

•  4.5hour for 1hour simulation	

•  8TB for restart file, total output was 160TB for 24hour simulation	

•  Composite of convection (vertical velocity)	

•  Δx≦1.7km : Convection is represented at multiple grids	

Y.Miyamoto(RIKEN/AICS)	

Y.Kajikawa(RIKEN/AICS)	

R.yoshida(RIKEN/AICS)	

T.yamaura(RIKEN/AICS)	

(Miyamoto et al. 2013, GRL)

Global Sub-km experiment	

Movie by R.Yoshida(RIKEN/AICS)	

Japanese post-K (exa-scale) project	

•  RIKEN is selected to develop an exa-scale supercomputer by 2020.	

•  Feasibility study (2012-2013) !
•  3 architectures	

• Vector machine	

•  “K computer”-like machine	

• Accelerators	

•  Application side	

• Scientific roadmap to the exa-scale	

• Provide benchmarks and mini-apps	

NICAM-DC	

•  Dynamical core package of NICAM	

•  BSD 2-clause licence	

•  From website (http://scale.aics.riken.jp/nicamdc/) or GitHub	

•  Basic test cases are prepared	

•  Application	

•  G8 ICOMEX project : scientfic/computational performance evaluation	

•  Feasibility studies for Japanese post-K supercomputer	

R.yoshida(RIKEN/AICS)	

Acceleration by GPU	

•  GPU programming using OpenACC	

•  NICAM has 600K lines of source code	

•  Active development by researchers and students���

: Most of them are not familiar to the GPU programming	

•  We do not want to split the source code (if possible)	

•  Optimization by OpenACC experts	

•  NICAM-DC was used for testbed : whole dynamical core is ready	

•  AoS is changed to SoA again	

•  Reduce GPU-to-Host transfer for MPI communication as possible	

A.Naruse(NVIDIA)	

N.Maruyama(RIKEN AICS)	

Acceleration by GPU	

El

ap
se

d
tim

e
[s

ec
/s

te
p]
�

TSUBAME(HOST) � TSUBAME(ACC) � K�

•  Preliminary results	

•  56km horizontal, 160layers	

•  TSUBAME2.5(Tokyo Tec.) and K computer	

•  Weak scaling test (56km-3.5km) results are also good	

5 node x 1 PE - 8 thread	

5 node x 2 PE - 2 GPU	

5 node x 8 PE	

500GB/s	

64GB/s	

64GB/s	

Memory throuput	

A.Naruse(NVIDIA)	

N.Maruyama(RIKEN AICS)	

Summary	

• NICAM starts shifting to the peta-scale era	

•  Good efficiency and scalability enlarge research field of GCSRM	

•  Global sub-km simulation study	

•  Towards to the next generation computer…	

•  Keep SIMPLE !	

• Ongoing effort	

•  Massive incorporation of components : NICAM-ESM	

•  OpenACC for physics component	

