

Streamlining HPC scenarios for future NWP

Sami.Saarinen@csc.fi (CSC – IT Center for Science Ltd, Finland) with Deborah.Salmond@ecmwf.int (ECMWF) April 14-15, 2014 for ECMWF Scalability workshop

PREVIOUSLY ON 24

IFS T1279L137 ~ 16km : 10-day FC : CY40R1

Outline of the talk

FACTS

"A thing that is known or proved to be true"

The power wall

A "Total Recall" ?

- CPU clock frequencies have practically ceased to increase about 10 years ago
 - Power [W] ~ Freq³ → lots of heat & $\in \in \in$ (~ 1.4 \$\$\$)
 - Frequencies ~ 1 ... 3 GHz (except on IBM P6 @ 4.7GHz)
- However, Moore's Law continues to be valid
 - Requires increased investments in parallelism
 - GPUs and many-core techniques offer a viable option
- A multi-objective optimization dilemma
 - Power is capped by energy consumption limits
 - Yet much more computational performance is needed

CSC

Targeting T2047L137 (~10km)

- ECMWF's near future operational FC model
- Sample performance data from Cray XC30 run
 - 128 nodes, 24-cores/node in 2 sockets, 64GB/node
 - Ivy Bridge E5-2697 v2 (2.7GHz) TDP 130W/socket
- 10-day forecast : 1024 MPI x 6-way OpenMP
 - Compiled with Cray CCE 8.2.2 and uses 2-way HT
- Time step : 450s
- Total elapsed time : 6242s (~1h 44min)
- Baseline energy @ 90% TDP : 51.9 kWh

10-day T2047L137 ~ 10km t = 6242s @ 51.9 kWh

IFS parallelization over MPI + OpenMP

SCENARIOS

"A written outline of a film, novel, or stage work giving details of the plot and individual scenes"

On CPU-side CAF-scaling not too bad ... (T2047L137/RAPS12 CY37R3 on HECToR, Cray XE6) (Courtesy George Mozdzynski, ECMWF)

Performance improvement due to CAF

csc

Using GPUs with help of OpenACC IFS

DAXPY with OpenMP & OpenACC

```
SUBROUTINE daxpy(n, a, x, y)
INTEGER :: n, j
REAL(kind=8) :: a, x(n), y(n)
!$omp parallel do
DO j = 1,n
y(j) = y(j) + a * x(j)
ENDDO
!$omp end parallel do
END SUBROUTINE daxpy
! call daxpy with 128M elements
```

```
CALL daxpy(2**27, 3.14_8, x, y);
```

```
SUBROUTINE daxpy(n, a, x, y)
INTEGER :: n, j
REAL(kind=8) :: a, x(n), y(n)
!$acc parallel loop
D0 j = 1,n
    y(j) = y(j) + a * x(j)
ENDD0
!$acc end parallel loop
END SUBROUTINE daxpy
! call daxpy with 128M elements
```

```
CALL daxpy (2**27, 3.14_8, x, y);
```

Tempted to go for GPUs ?

- Lets perform a "back-of-an-envelope study"
 - How well could IFS scale on GPUs ?
 - (When) Are we going to save in our energy bill ?
- Speculating with T2047L137 on CPUs+GPUs
 - − Physics (~29%) to GPUs \rightarrow target 3X speedup here
 - Plus most of dynamics (~35%) with speedup of 2X
 - Complete code re-write with total speedup of 3X

Assume 2 x Kepler K40 (12GB) per lvB-node

- Total 256 K40 GPUs with GDR MPI + Hyper-Q/MPS
- TDP value 235W (~70% will be used), idle ~20W

Expected power [W] profile on GPUs

(Courtesy Martin Burtscher, TX State Univ)

T2047L137 ~ 10km t = 6242s @ 51.9 kWh

Physics
Radiation
Dynamics
SLCOMMs
LT+FFT
Transposes
Misc

Physics → GPUs : 1.24X t = 5035s @ 55.3 kWh

Complete re-write : 3X t = 2081s @ 41.7 kWh

Energy vs. IFS speedup vs. GPU-%

Allow CPUs ~ idle when on GPU regions

STREAMLINING

"Make (an organization or system) more efficient and effective by employing faster or simpler working methods"

GPUs with **OpenACC** GPU#0 **GPU#1** GPU#0 N#1 OpenMP# 0 Û Ū Ū U -1 2 2 2 2 -2 2 **MPI# 0** 3 5

 One or more MPI-tasks per multi-core CPU node
 One or more OpenMPthread per MPI-task
 Primarily threads #0 communicate over MPI

 e.g. one GPU/CPU-socket
 OpenACC controls CPUto-GPU comm. & comput.
 Hyper-Q/MPS allows MPItasks to timeshare GPUs
 MPI messages can go

GPU#1

N#2

0

1

2

Û

6

directly between GPUs

Streamlining suggestions [1]

- Look at OpenMP regions ~ OpenACC "friendly"
 - Start from physics usually no MPI involved
- Create data on GPUs and try to keep it there
 - Minimize transfers between host CPUs
- Optimize with CUDA call it from OpenACC
 - Use high performance CUDA-libraries
- Use all allowable asynchronous operations with OpenACC – GPUs like to "drink from a hosepipe"
 - Feed GPUs with more data whilst previous computed

CSC

Streamlining suggestions [2]

Direct MPI-link between GPU-to-GPU exists

Direct device resident data exchange between GPUs

Simplify some MPI coding on CPUs with CAF

- Caveat : depends heavily on use of Cray compiler ...

Remember: energy savings eventually reachable

- When the major part of code runs on GPUs switch also to less energy consuming CPUs – saves you some £££'s
- But : without a major code restructuring and algorithmic changes good computational performance & energy efficiency difficult to obtain

Compiler support for accelerated computing as of 1Q/2014

	Cray	Intel	PGI	GNU	CAPS
OpenACC (GPUs)	Yes	No	Yes	2015?	Yes
OpenACC (MICs)		No	1.16		Yes
OpenMP 4.0 (MICs)	Soon	Yes	No	??	
CAF	Yes	Without MPI	No	??	
CUDA (nvcc)	(Yes)		(Yes)	1	(Yes)
CUDA Fortran			Yes		

CSC

Acknowledgements

- Prof. Martin Burtscher, Texas State University, for exhilarating discussions & learning material on how to calculate energy consumption
- Peter Towers for providing T2047L137 data
- George Mozdzynski for CAF material
- Peter Messmer from nVidia for encouraging discussions and excellent CUDA teaching
- And finally Olli-Pekka Lehto & Tommi Tervo from CSC for interpreting the power figures

Some references

- Herb Sutter : "The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software" , <u>http://www.gotw.ca</u>, DDJ 3/2005
- Martin Burtscher : "Accurate Power and Energy Measurement on Kepler-based Tesla GPUs", GTC2014, San Jose, CA
- X.Lapillonne, O.Fuhrer : "Using compiler directives to port large scientific applications to GPUs: An example from atmospheric science", 2/2014
- George Mozdzynski : "IFS Optimisations for ExaScale & Co-design", CRESTA 3rd Collaboration Meeting, Stockholm, 9/2012

Vocabulary

C S C

- CUDA = Compute Unified Device Architecture
- GDR = GPUDirect RDMA allows exchange of GPU-data directly between MPI-tasks
- GPU = Graphics Processing Unit
- Hyper-Q = Allows CUDA kernels to be processed concurrently on the same GPU
- MPS = Multi-Process Service allows sharing a GPU between multiple MPI-tasks
- RDMA = Remote Direct Memory Access
- TDP = Thermal Design Power