Streamlining HPC scenarios for future NWP

N
-~
[N

Sami.Saarinen@csc.fi (CSC - IT Center for Science
with Deborah.Salmond@ecmwf.int (ECMWF)

April 14-15, 2014 for ECMWF Scalability workshop

mailto:Sami.Saarinen@csc.fi
mailto:Deborah.Salmond@ecmwf.int

MONDAYS 9/8c

LI D
4 = TH T
'\. 4 Vi aiil
o e et
- ' S \
| 5 - - P -
\ e
A - bl
y. b [
Y |

PREVIOUSLY ON 24

IFS T1279L137 ~ 16km : 10-day FC : CY40R1

Power7 - 60 Nodes

CRAY - 100 Nodes

m CPU
Comms

M Barrier

Serial

2258 seconds
5.1 Tflops (8.6% peak)

2182 seconds
5.2 Tflops (10.4% peak)

Outline of the talk

v Facts

v Scenarios

o Streamlining

CSscC

FACTS

“A thing that is known or proved to be true”

The power wall $

7 - .
10 : Transistors
6| (Thousands)
10 .. P
10° Sinégle—Th-read
g Performance
i SpeclNT
10% | (Sp)
10° |
10° |
10" |

1975 1980 1985 1990 1995 2000 2005 2010 2015

A “Total Recall” ?

o CPU clock frequencies have practically
ceased to increase about 10 years ago

— Power [W] ~ Freg® - lots of heat & €€€ (~ 1.4 $$9$)

— Frequencies ~ 1 ... 3 GHz (excepton IBM P6 @ 4.7GHz)
@ However, Moore’s Law continues to be valid

— Requires increased investments in parallelism

— GPUs and many-core techniques offer a viable option
¢ A multi-objective optimization dilemma

— Power Is capped by energy consumption limits
— Yet much more computational performance is needed

*

CSscC

Targeting T2047L137 (~10km)

v ECMWF's near future operational FC model

v Sample performance data from Cray XC30 run
— 128 nodes, 24-cores/node in 2 sockets, 64GB/node
— lvy Bridge E5-2697 v2 (2.7GHz) — TDP 130W/socket

v 10-day forecast : 1024 MPI x 6-way OpenMP
— Compiled with Cray CCE 8.2.2 and uses 2-way HT

v Time step : 450s
v Total elapsed time : 6242s (~1h 44min)
v Baseline energy @ 90% TDP : 51.9 kWh

10-day T2047L137 ~ 10km
t =6242s @ 51.9 kWh

~-

Csc

@ Physics

O Radiation

B Dynamics
O SLCOMMs
BLT+FFT

B Transposes
= Misc

IFS parallelization over MPIl + OpenMP

Node#l

d otot+—fo o
é = = = [
O 2T2""'2'1T
MPI# O 1 ... 2 3

» One or more MPI-tasks
per multi-core CPU node
» One or more OpenMP-
thread per MPI-task

» Primarily threads #0

communicate over MPI o

\ 4
L 4

Node#?2
oo T— o0
BT = = Tl
'2'1?""7Tr2
4 e 6 7
2
2

CSscC

SCENARIOS

“A written outline of a film, novel, or stage work
giving details of the plot and individual scenes”

On CPU-side CAF-scaling not too bad ...

(T2047L137/RAPS12 CY37R3 on HECToOR, Cray XEB6)
(Courtesy George Mozdzynski, ECMWF)

Performance improvement due to CAF
25%

Scaling with and without CAF

700

600 /
500

10%

recast/Days / Day\
5.
3

w 5
o o
o o

5%

Performance Improvement

e
N
S

0%

0 10000 20000 30000 40000 50000 GOOOOL??OOOO
100
Number of Cores

0

0 20600 40(I)00 60600 80600
Number of Cores

*

Using GPUs with help of OpenACC -«

IFS

Socket 1

Core 0

Core 2

J\L Core 3 //_

['Sacc parallel

['Sacc end parallel

Runs on host CPU(s)

. Offloaded to GPU

~-

Csc

DAXPY with OpenMP & OpenACC

SUBROUTINE daxpy(n, a, X, y)
INTEGER :: n, j
REAL(kind=8) :: a, x(n), y(n)
I$omp parallel do

DO § = 1,n

y(3) = y(3) + a * x(3)

ENDDO
I$omp end parallel do
END SUBROUTINE daxpy

I call daxpy with 128M elements
CALL daxpy(2**27, 3.14 8, X, y);

SUBROUTINE daxpy(n, a, X, y)
INTEGER :: n, j
REAL(kind=8) :: a, x(n), y(n)
I$acc parallel loop

DO j = 1,n

y(3) = y(3) + a * x(3)

ENDDO
I$acc end parallel loop
END SUBROUTINE daxpy

I call daxpy with 128M elements
CALL daxpy(2**27, 3.14 8, X, y);

Tempted to go for GPUs ?

o Lets perform a “back-of-an-envelope study”

— How well could IFS scale on GPUs ?
— (When) Are we going to save in our energy bill ?

@ Speculating with T2047L137 on CPUs+GPUs
| ”’?— Physics (~29%) to GPUs - target 3X speedup here
i— Plus most of dynamics (~35%) with speedup of 2X
— Complete code re-write with total speedup of 3X

o Assume 2 x Kepler K40 (12GB) per IvB-node

— Total 256 K40 GPUs with GDR MPI + Hyper-Q/MPS
— TDP value 235W (~70% will be used), idle ~20W

Expected power [W] profile on GPUs

(Courtesy Martin Burtscher, TX State Univ)

160

140

120

=
o
o

0]
o

(0]
o

Measured Power [W]

S
o

N
o

o

10.7 12.0 13.3 14.6 15.9 17.2 18.5 19.8 21.1 22.4 23.7
Runtime [s]

T2047L137 ~ 10km
t =6242s @ 51.9 kWh

Complete re-write : 3X
t =2081s @ 41.7 kWh

Gain

@ Physics
O Radiation
B Dynamics
ESLCOMMSs
ELT+FFT

B Transposes
@ Misc

Runtime

Physics = GPUs : 1.24X

t =5035s @ 55.3 kWh

m Physics

O Radiation

B Dynamics
O SLCOMMSs
BLT+FFT

B Transposes
= Misc

Also dynamics+ : 1.58X

t =3943s @ 55.8 kWh

Gain

/A

<]

@ Physics

O Radiation

B Dynamics
O SLCOMMs
ELT+FFT

B Transposes
@ Misc

Energy consumption [klh 1

90

80

70

GO

D0

40

30

20

10

Energy vs. IFS speedup vs

. GPU-%

[
Baseline energy ™

52 kHh

IFS speedup 1.5

Stay below

the red line

33X

4%

Rather
failed
effort

—
Huge

4X

20

40

60

80

Percentage of runtime on GPUs [¥ 1

100

Energy consumption [kih 1

Allow CPUs ~ idle when on GPU regions

90

80

20

60

o0

40

30

20

10

Basel ine energg 02 khh I : :
IFS speedup 1.5
F
- 3X n
e Total energy
usage obviously
i goes down i
B 1.5X
' 21
=i —_— -
B o L= : |
- = |
= " - 2X
=] .
i = i Al
— =
= el :
Bl
i =3 3X
- =1
= = 4X
] 1 | |
O 20 40 60O 80 100

Percentage of runtime

on GPUs [¥ 1

CSscC

STREAMLINING

“Make (an organization or system) more
efficient and effective by employing faster or
simpler working methods”

GPUs with
OpenACC

N#1
1+
o
=
c
o
O 2T2""'2"Z"' """"" ""'2"2'""'2'r2
MPI# 0 1 ... 2 4/rsD , ... “6 7

» e.g. one GPU/CPU-socket
» OpenACC controls CPU-
to-GPU comm. & comput.

» Hyper-Q/MPS allows MPI-
thread per MPI-task tasks to timeshare GPUs

» Primarily threads #0 » MPIl messages can go

communicate over MPI * ¢ directly between GPUs

\ 4 ¢
L 4 4

» One or more MPI-tasks
per multi-core CPU node
» One or more OpenMP-

*

CscC

Streamlining suggestions [1]

o Look at OpenMP regions ~ OpenACC "friendly”
— Start from physics — usually no MPI involved

o Create data on GPUs and try to keep it there
— Minimize transfers between host CPUs

@ Optimize with CUDA —call it from OpenACC
— Use high performance CUDA-libraries

o Use all allowable asynchronous operations with
OpenACC — GPUs like to “drink from a hosepipe”

— Feed GPUs with more data whilst previous computed

*

cscC

Streamlining suggestions [2]

@ Direct MPI-link between GPU-to-GPU exists
— Direct device resident data exchange between GPUs

@ Simplify some MPI coding on CPUs with CAF
— Caveat : depends heavily on use of Cray compiler ...

@ Remember: energy savings eventually reachable
— When the major part of code runs on GPUs switch also to less
energy consuming CPUs — saves you some £££'s
@ But : without a major code restructuring and
algorithmic changes good computational
performance & energy efficiency difficult to obtain

Compiler support for accelerated
computing as of 1Q/2014

Cray Intel PGI GNU | CAPS
OpenACC (GPUs) | Yes No Yes |2015? | Yes
OpenACC (MICs) No Yes
OpenMP 4.0 (MICs) | Soon | Yes No ??
CAF Yes | Without No ?7?
MPI
CUDA (nvcc) (Yes) (Yes) (Yes)

CUDA Fortran

Yes

*

CSscC

*

CSscC

Acknowledgements

« Prof. Martin Burtscher, Texas State University, for
exhilarating discussions & learning material on
how to calculate energy consumption

v Peter Towers for providing T2047L137 data
v George Mozdzynski for CAF material

v Peter Messmer from nVidia for encouraging
discussions and excellent CUDA teaching

« And finally Olli-Pekka Lehto & Tommi Tervo from
CSC for interpreting the power figures

*

CSscC

Some references

v Herb Sutter : "The Free Lunch Is Over: A
Fundamental Turn Toward Concurrency in Software”
, DDJ 3/2005

« Martin Burtscher : “Accurate Power and Energy
Measurement on Kepler-based Tesla GPUS”,
GTC2014, San Jose, CA

v X.Lapillonne, O.Fuhrer : "Using compiler directives
to port large scientific applications to GPUs: An
example from atmospheric science” , 2/2014

v George Mozdzynski : "IFS Optimisations for
ExaScale & Co-design” , CRESTA 3rd Collaboration
Meeting, Stockholm, 9/2012

http://www.gotw.ca/

Vocabulary *

v CAF = Co-Array Fortran (part of Fortran 2008)
« CUDA = Compute Unified Device Architecture

v G
G

v G

DR = GPUDirect RDMA allows exchange of
PU-data directly between MPI-tasks

PU = Graphics Processing Unit

v Hyper-Q = Allows CUDA kernels to be processed
concurrently on the same GPU

v M
G

v R

PS = Multi-Process Service allows sharing a
PU between multiple MPI-tasks

DMA = Remote Direct Memory Access

« TDP = Thermal Design Power

	� Streamlining HPC scenarios for future NWP �
	PREVIOUSLY ON 24
	IFS T1279L137 ~ 16km : 10-day FC : CY40R1 �
	Outline of the talk
	Facts
	The power wall
	A “Total Recall” ?
	Targeting T2047L137 (~10km)
	Slide Number 9
	IFS parallelization over MPI + OpenMP
	SCENARIOS
	On CPU-side CAF-scaling not too bad …�(T2047L137/RAPS12 CY37R3 on HECToR, Cray XE6)�(Courtesy George Mozdzynski, ECMWF)
	Using GPUs with help of OpenACC
	DAXPY with OpenMP & OpenACC
	Tempted to go for GPUs ?
	Expected power [W] profile on GPUs� (Courtesy Martin Burtscher, TX State Univ)
	Slide Number 17
	Energy vs. IFS speedup vs. GPU-%
	Allow CPUs ~ idle when on GPU regions
	STREAMLINING
	GPUs with�OpenACC
	Streamlining suggestions [1]
	Streamlining suggestions [2]
	Compiler support for accelerated computing as of 1Q/2014
	Acknowledgements
	Some references
	Vocabulary

