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IFS T1279L137 ~ 16km : 10-day FC : CY40R1
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Outline of the talk

v Facts

v Scenarios

o Streamlining
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FACTS

“A thing that is known or proved to be true”
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A “Total Recall” ?

o CPU clock frequencies have practically
ceased to increase about 10 years ago

— Power [W] ~ Freg® - lots of heat & €€€ (~ 1.4 $$9$)

— Frequencies ~ 1 ... 3 GHz (excepton IBM P6 @ 4.7GHz)
@ However, Moore’s Law continues to be valid

— Requires increased investments in parallelism

— GPUs and many-core techniques offer a viable option
¢ A multi-objective optimization dilemma

— Power Is capped by energy consumption limits
— Yet much more computational performance is needed
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Targeting T2047L137 (~10km)

v ECMWF's near future operational FC model

v Sample performance data from Cray XC30 run
— 128 nodes, 24-cores/node in 2 sockets, 64GB/node
— lvy Bridge E5-2697 v2 (2.7GHz) — TDP 130W/socket

v 10-day forecast : 1024 MPI x 6-way OpenMP
— Compiled with Cray CCE 8.2.2 and uses 2-way HT

v Time step : 450s
v Total elapsed time : 6242s (~1h 44min)
v Baseline energy @ 90% TDP : 51.9 kWh



10-day T2047L137 ~ 10km
t =6242s @ 51.9 kWh
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@ Physics

O Radiation

B Dynamics
O SLCOMMs
BLT+FFT

B Transposes
= Misc



IFS parallelization over MPIl + OpenMP
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SCENARIOS

“A written outline of a film, novel, or stage work
giving details of the plot and individual scenes”



On CPU-side CAF-scaling not too bad ...

(T2047L137/RAPS12 CY37R3 on HECToOR, Cray XEB6)
(Courtesy George Mozdzynski, ECMWF)
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Using GPUs with help of OpenACC -«

IFS

Socket 1

Core 0

Core 2

J\L Core 3 //_

['Sacc parallel

['Sacc end parallel

Runs on host CPU(s)

. Offloaded to GPU
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DAXPY with OpenMP & OpenACC

SUBROUTINE daxpy(n, a, X, y)
INTEGER :: n, j
REAL(kind=8) :: a, x(n), y(n)
I$omp parallel do

DO § = 1,n

y(3) = y(3) + a * x(3)

ENDDO
I$omp end parallel do
END SUBROUTINE daxpy

I call daxpy with 128M elements
CALL daxpy(2**27, 3.14 8, X, y);

SUBROUTINE daxpy(n, a, X, y)
INTEGER :: n, j
REAL(kind=8) :: a, x(n), y(n)
I$acc parallel loop

DO j = 1,n

y(3) = y(3) + a * x(3)

ENDDO
I$acc end parallel loop
END SUBROUTINE daxpy

I call daxpy with 128M elements
CALL daxpy(2**27, 3.14 8, X, y);




Tempted to go for GPUs ?

o Lets perform a “back-of-an-envelope study”

— How well could IFS scale on GPUs ?
— (When) Are we going to save in our energy bill ?

@ Speculating with T2047L137 on CPUs+GPUs
| ”’?— Physics (~29%) to GPUs - target 3X speedup here
i— Plus most of dynamics (~35%) with speedup of 2X
— Complete code re-write with total speedup of 3X

o Assume 2 x Kepler K40 (12GB) per IvB-node

— Total 256 K40 GPUs with GDR MPI + Hyper-Q/MPS
— TDP value 235W (~70% will be used), idle ~20W




Expected power [W] profile on GPUs

(Courtesy Martin Burtscher, TX State Univ)
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T2047L137 ~ 10km
t =6242s @ 51.9 kWh

Complete re-write : 3X
t =2081s @ 41.7 kWh

Gain

@ Physics
O Radiation
B Dynamics
ESLCOMMSs
ELT+FFT

B Transposes
@ Misc

Runtime

Physics = GPUs : 1.24X

t =5035s @ 55.3 kWh

m Physics

O Radiation

B Dynamics
O SLCOMMSs
BLT+FFT

B Transposes
= Misc

Also dynamics+ : 1.58X

t =3943s @ 55.8 kWh
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Energy consumption [ klh 1
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Energy consumption [ kih 1

Allow CPUs ~ idle when on GPU regions
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STREAMLINING

“Make (an organization or system) more
efficient and effective by employing faster or
simpler working methods”



GPUs with
OpenACC
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» e.g. one GPU/CPU-socket
» OpenACC controls CPU-
to-GPU comm. & comput.

» Hyper-Q/MPS allows MPI-
thread per MPI-task tasks to timeshare GPUs

» Primarily threads #0 » MPIl messages can go

communicate over MPI * ¢ directly between GPUs
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» One or more MPI-tasks
per multi-core CPU node
» One or more OpenMP-
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Streamlining suggestions [1]

o Look at OpenMP regions ~ OpenACC "friendly”
— Start from physics — usually no MPI involved

o Create data on GPUs and try to keep it there
— Minimize transfers between host CPUs

@ Optimize with CUDA —call it from OpenACC
— Use high performance CUDA-libraries

o Use all allowable asynchronous operations with
OpenACC — GPUs like to “drink from a hosepipe”

— Feed GPUs with more data whilst previous computed
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Streamlining suggestions [2]

@ Direct MPI-link between GPU-to-GPU exists
— Direct device resident data exchange between GPUs

@ Simplify some MPI coding on CPUs with CAF
— Caveat : depends heavily on use of Cray compiler ...

@ Remember: energy savings eventually reachable
— When the major part of code runs on GPUs switch also to less
energy consuming CPUs — saves you some £££'s
@ But : without a major code restructuring and
algorithmic changes good computational
performance & energy efficiency difficult to obtain



Compiler support for accelerated
computing as of 1Q/2014

Cray Intel PGI GNU | CAPS
OpenACC (GPUs) | Yes No Yes |2015? | Yes
OpenACC (MICs) No Yes
OpenMP 4.0 (MICs) | Soon | Yes No ??
CAF Yes | Without No ?7?
MPI
CUDA (nvcc) (Yes) (Yes) (Yes)

CUDA Fortran

Yes
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Vocabulary *

v CAF = Co-Array Fortran (part of Fortran 2008)
« CUDA = Compute Unified Device Architecture

v G
G

v G

DR = GPUDirect RDMA allows exchange of
PU-data directly between MPI-tasks

PU = Graphics Processing Unit

v Hyper-Q = Allows CUDA kernels to be processed
concurrently on the same GPU

v M
G

v R

PS = Multi-Process Service allows sharing a
PU between multiple MPI-tasks

DMA = Remote Direct Memory Access

« TDP = Thermal Design Power
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