

## scalability issues

## S. Masson for the NEMO system team F. Vigilant (Bull) <u>E. Maisonnave</u> (CERFACS)

## OUTLINE

- NEMO scalability: State of the art & bottleneck
- "Exascale" project for NEMO
- · IO performances
- · Other components: Sea-Ice, AGRIF, TOP
- · XeonPhi, GPU...
- · Climate: coupler
- · Conclusion

# State of the art

# The "project funding" paradox :

Always more groups and projects working or proposing to work on NEMO performances...

#### but

- Still no clear ideas of the issues related to NEMO performances
- · Still no real quantifications of the bottlenecks
- Is there only one configuration profiling ?
- Sensitivity of these figures with domain size and core #?

## A marketing problem?



eXaScale Projet for

# center for excellence in parallel programming

center for excellence in parallel programming

# Co-design





## Contribute to the next generation of NEMO for eXaScale



ORCA 2 550 MB of memory 8 CPU hours 10 Gigabytes of output (daily)

ORCA ¼ 47 Gigabytes of memory 3500 CPU hours 120 Gigabytes of output (daily)

 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K



ORCA 1/12 414 Gigabytes of memory 90 000 CPU hours 1 Terabyte of output (daily) ORCA 1/36 > 1 Terabytes of memory ~4 000 000 CPU hours > 5 Terabytes of output (daily)

Science improvements may be driven by mesh refining involving more and more grid points but also more and more parameters in the models. Optimisation & Scalability are thus key to compute efficiently.

## center for excellence in parallel programming







#### Start from the basics:

- Benchmaking, timing
- Isolate the parameters impacting NEMO scalability
  - domain size (GYRE6/GYRE144, ORCA2/ORCA12)
  - Use of sea-ice model
  - North-pole folding

#### Improve existing model at limited cost:

- Suppress all global communications (time splitting)
   NO MORE SOLVER !!!
- Gather communications
- Point out sequential parts of the model
- Improve vectorisation
- MPI Communication improvement

#### Longer term work:

- Kernel optimization
- Hybrid MPI/OpenMP
- Intel Xeon Phi and GPU testing



eXaScale Projet NEM®

### center for excellence in parallel programming

## Configuration: Ideal case – GYRE6

- domain size 182 x 122 x 31
- scales up to subdomain size of 20x10
- point-to-point MPI communications explode (no more global)

## Improve MPI efficiency:

- maximize volume of data to be sent
- minimize MPI calls
- scales up to subdomain size of 7x6







## eXaScale Projet NEM®

### center for excellence in parallel programming

Configuration: Ideal case – GYRE\_24

- domain size 722 x 482n x 31
- scales up to subdomain size of 12x12
- scalability is improved



Configuration: Ideal case – GYRE\_48

- domain size 1442 x 962 x 31
- scales up to subdomain size of 22x22
- ideal scalability on the experiment range



# IO Output diagnostic files: based on XIOS



## XIOS BIG output benchmark daily mean outputs (one\_file mode)

example: GYRE 144 (4322\*2882\*31) 30d simulation (14400 time steps): in red: with daily outputs (every 480 step, total: 235G) in black: no outputs (enable = false)



## XIOS HUGE output benchmark hourly mean outputs (one\_file mode)

### example: GYRE 144 (4322\*2882\*31) 6d simulation (2880 time steps): in red: with hourly outputs (every 20 step, total: 1.1T) in black: no outputs



## 3.1-3.6G/s => 10-12T/h... 8160 nemo: + 15~20% for IO

## XIOS extremely efficient and convenient to output diagnostics

## **Remaining (future) bottlenecks:**

**Input** files: read by each MPI subdomain ask (but with on-the-fly interpolation) Restarts files are written/read by each MPI subdomain

### Further development already planned for XIOS

- Input file and restart with XIOS •
- Improve even more the scalability ٠
- Optimise the usage and the size of buffers •
- Allow grib format (?) •

•

# Sea-Ice

More and more expensive...

LIM2 -> LIM3 with ice categories, active salinity future: more complex rheology

Expected issue for scalability: unbalance between points with/without sea-ice solver in the sea-ice rheology

Proposed solutions for future developments Again, start with a clear and quantitative benchmaking asynchronous integration of ocean and sea-ice -> dedicated cores for sea-ice different grid resolution of ocean and sea-ice -> coupling with oasis? Replace solver by time-splitting as for the ocean



# AGRIF



Again, no clear and quantitative benchmaking of AGRIF...

Impact of the interpolation between the different grids on performance and scalability? On going work: run several nests at the same level in parallel



# TOP (PISCES)

Again, no clear and quantitative benchmaking of TOP... More computation, not so many communications... Should help for the scalability...

# OpenMP Xeon Phi GPU Vector again ?

First step: add OpenMP Ongoing work by CMCC (Italo Epicoco, Silvia Mocavero) BULL (Franck Vigilant, Cyril Mazauric)

Second step: check vectorization

To go further ? H2020 "CHANCE" lead by CMCC Parallel-in-time NEMO ?

# CONCLUSION

- Need a clear and quantitative benchmaking of NEMO to sort out key issues.
- · Co-design: a key of the success if involving HPC and NEMO experts
- Still a large scope for scalability improvement before rewriting everything
- · Clear roadmap for the IO part.
- But need to start now to work on long term developments

... and what about ocean-atmosphere coupling ?





#### OASIS3-MCT

- Developed by CERFACS since 1991 with CNRS since 2005 and many others
- Written in F90 and C; open source license (LGPL)
- Last OASIS3-MCT version based on MCT
- Public domain libraries: MPI; NetCDF; LANL SCRIP
- Large community of users: ~35 climate modelling groups world-wide, rapidly growing







### **OASIS3-MCT Success Stories**

### 1. NICAM-NEMO (JAMSTEC-IPSL)



10 interpolations (1 coupling time step) from/to NICAM icosahedral grid (12Km)

# Next bottleneck: initialisation at o(10,000)





### **OASIS3-MCT Success Stories**

2. ECHAM-COSMO (BTU Cottbus, FU Berlin)

OASIS3-MCT coupling between global & regional grid

- with 6 47-levels 3D fields (2 way nesting) = 287 2D fields
- at each ECHAM time step
- includes ECHAM-MPI-OM (ocean) coupling

Main results

- Efficiency: overhead = few %
- Modularity: can be coupled with CLM (Community Land Model, as part of CESM, NCAR)



Conclusion: OASIS is scalable again, and still good for modularity