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The GEM model 
1. Grid point lat/lon model 
2. Finite differences on an Arakawa-C grid 
3. Semi-Lagrangian (poles are an issue) 
4. Implicit time discretization 

1. Direct solver (Nk 2D horizontal elliptic problems) 
2. Full 3D iterative solver based on FGMRES 

5. Global uniform, Yin-Yang and LAM configurations 
6. Hybrid MPI/OpenMP 

1. Halo exchanges 
2. Array transposes for elliptic problems 

7. PE block partitioning for I/O 

Global uniform grid:  
1) a challenge for DM implementation 
2) many more elliptic problems to solve due 
     to implicit horizontal diffusion (transposes) 
3) semi-Lagrangian near the poles 
4) current DM implementation will not scale 



Yin-Yang grid configuration 

• Implemented as 2 LAMs 
communicating at boundaries 

• Optimized Schwarz iterative 
method for solving the elliptic 
problem. 

• Scales a whole lot better 
• Operational implementation due 
• in spring 2015 
• Communications are an issue 
• Exchanging a Global Uniform 

scalability problem (poles) by 
another scalability problem 



Yin-Yang 10 km scalability 
Ni=3160, Nj=1078, Nk=158 

H960 H3200 H5056 H1920 

Y3200 Y8192 Y16384 Y30968 Y5056 

H= CMC/hadar: IBM Power7 
Y= NCAR/yellowstone: IBM iDataPlex 

16x30x1 
198x36 

79x32x1 
40x34 

79x49x4 
40x22 

32x32x8 
99x34 32x32x4 

99x34 
32x30x1 
99x36 

40x40x1 
79x27 



Yin-Yang 10 km scalability 
Dynamics components 



The future of GEM 

• Yin-Yang 2km on order 100K cores is already feasible 
on P7 processors or similar 

• Yin-Yang exchanges will need work 
• Using GPUs capabilities is on the table 
• Improve Omp scalability 
• Re-partition MPI sub-domain (bni,bnj,ni,nj,nk) 
• Export SL interpolations to reduce halo size 
• Processor mapping to reduce the need to communicate 

through the switch 
• Partition NK 
• MIMD approach for I/O 

 
 

 



Investigating scalability and accuracy 
on an icosahedral geodesic grid 

Spatial discretization: finite volume method on  
        icosahedral geodesic grid 
 
Time discretization: exponential integration methods which 
   resolve high frequencies to the required level of  
                 tolerance without severe  time step restriction  
 
Shallow water implementation already shows  
great scalability 
 
Vertical coordinates:  
    Generalized quasi-Lagrangian with 
    conservative monotonic remapping 



Unstable jet, icosahedral grid number 6,  
dx= 112 km,  dt=7200 sec (typically 30 sec) 

Pudykiewicz (2006), J. Comp. Phys., 213, pp 358-390 
Pudykiewicz J. (2011),  J. Comp. Phys., 230, pp 1956--1991 
Qaddouri A., J. et al. (2012), Q. J. Roy. Met. Soc., 138, pp 989--1003 
Clancy C., Pudykiewicz J. (2013), Tellus A, vol. 65 
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Ensemble-Variational Assimilation: EnVar 

• EnVar will replace 4D-Var at Environment Canada in 2014 for both 
global and regional deterministic prediction systems 

• EnVar uses a variational assimilation approach in combination with 
the already available 4D ensemble covariances from the EnKF 

• By using 4D ensembles, EnVar performs a 4D analysis without need 
of tangent-linear/adjoint of forecast model 

• Consequently, it is more computationally efficient and easier to 
maintain/adapt than 4D-Var: 

– EnVar:  ~10 min, 320 cores, 50km grid spacing 
– 4D-Var: ~1hr, 640 cores, 100km grid spacing 

• Future improvements to EnKF will benefit both ensemble and 
deterministic forecasts incentive to increase overall effort on 
EnKF development 

• EnKF scalability examined by Houtekamer et al. (2014, MWR) 
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• In 4D-Var the 3D analysis increment is evolved in time using the 
TL/AD forecast model (here included in H4D): 
 
 
 

• In EnVar the background-error covariances and increment are 
explicitly 4-dimensional, resulting in cost function: 
 
 4D

1
4D4D4Db4D

1
4Db4D4D 2

1)][()][(
2
1)( xBxyxHxRyxHxx ∆∆+−∆+−∆+=∆ −− TT HHJ

EnVar formulation 

xBxyxHxRyxHxx ∆∆+−∆+−∆+=∆ −− 1
4Db4D

1
4Db4D 2

1)][()][(
2
1)( TT HHJ



Page 11 – April-16-14 

Current operational systems 
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2013-2017: Toward a Reorganization of 
the NWP Suites at Environment Canada 
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2014 implementation: 4D-Var replaced by EnVar 
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4D error covariances 
Temporal covariance evolution 

EnVar (4D ensemble covariance): 

4D-Var: 

-3h 0h +3h 

256 pre-computed forecast model integrations 
provide 4D background-error covariances 

~70 TL and AD model integrations 
performed as part of assimilation 

“analysis time” 
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Spatial covariance localization in EnVar 
(Buehner 2005, Lorenc 2003) 

• Complexity of 4D-Var is replaced by relatively simple use of 4D 
ensemble covariances to compute analysis increment and gradient 
during each iteration of the cost function minimization 

• If the spatial localization function is horizontally homogeneous and 
isotropic, then spectral approach is efficient (for global lat-lon system): 

 ∆x4D = ∑k ek
4D o (L1/2 ξk) = ∑k ek

4D 
o (S-1 Lv

1/2 Lh
1/2 ξk)  

 where: 
• ek

4D is the kth 4D ensemble deviation 
• ξk is corresponding control vector 
• S-1 is the inverse spectral transform 
• Lh = SLhST is the diagonal spectral horizontal localization matrix 

• Equivalent to using sqrt of localized sample covariance matrix: 
 L o[∑k ek (ek)T] 
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Scalability of EnVar 
• Computation and I/O must be highly parallel, ek

4D is large:  
• 256 members, 7 times, 4 vars, 800x400x75L  ~640GB 

• Calculation of analysis increment (and adjoint) currently about 1/2 of 
overall cost of minimization: ∆x4D = ∑k ek

4D o (S-1 Lv
1/2 Lh

1/2 ξk)  

• Currently, Schur product is the most expensive (and simplest) step, 
but scales perfectly: ∆x4D=∑k ek

4D o αk  

 

 

• Spectral transform is next most 
expensive, involves a global 
transpose:  αk=S-1 Lv

1/2 Lh
1/2 ξk 

• Currently only 1D decomposition: 
• ξk : split by ens member (256) 
• ∆x : split by latitude (400) 

• Improved scalability requires 2D 
decomposition (3D transposition 
strategy)  under development 
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