
Porting, validating, and optimizing
NOAA/ESRL forecast models on Intel

Xeon Phi (and Xeon)

October 28, 2014

Jim Rosinski

NOAA/ESRL

Outline

• Icosahedral grid and example communication pattern

• Current status of NIM and FIM dynamics performance

• Load balancing on heterogeneous hardware

• Lazy approach to code speedups
– Performance improvements due to hardware upgrades

– What if you just address threading and porting?

• Performance enhancements

• Communication issues

• Future directions

16th Workshop on High Performance Computing
in Meteorology

Contributors

• Tom Henderson (NOAA)
– Physics porting and optimization

• Jacques Middlecoff (NOAA)
– MPI optimizations

• Mike Greenfield (Intel)
– Organizing Intel assistance to FIM and NIM efforts

• Ruchira Sasanka (Intel)
– Optimizing MPI communication
– General optimization efforts

• Ashish Jha (Intel)
– Alignment optimizations
– Compiler flag suggestions

16th Workshop on High Performance Computing
in Meteorology

What is NIM?

• Non-hydrostatic Icosahedral Model

• Weather forecast model (up to 10 days)
– Designed for very high resolution (< 10 km)

– Improved forecast performance over terrain

• Software:
– Optimize performance on current scientific target

platform (Xeon-based)

– Maintain code base in single-source

– Port to multiple platforms including MIC, GPU

– Validate model solutions on all ported platforms

16th Workshop on High Performance Computing
in Meteorology

16th Workshop on High Performance Computing
in Meteorology

16th Workshop on High Performance Computing
in Meteorology

NIM thread scaling on MIC

16th Workshop on High Performance Computing
in Meteorology

NIM single-node performance on
various hardware (100 km)

Node configuration MPI
tasks

Runtime for
100 time steps

Hardware specs (system=Intel
endeavor)

Host-only IVB 2 67.1 sec Xeon E5-2697v2, 2.7 GHz, 24 cores

Host-only HSW-EP 2 57.4 sec Xeon E5-2697v3, 2.6 GHz, 28 cores

MIC-only 2 67.4 sec 1.23 GHz, 61 cores

Symmetric IVB+KNC 5+5 39.6 sec See above

16th Workshop on High Performance Computing
in Meteorology

NIM speedups on CPU due to
hardware improvements

Architecture CPU specs Memory specs NIM dynamics
time on 1 node

% speedup
vs. SNB

SandyBridge
(stampede)

16 cores Intel Xeon
E5-2680@2.7GHz

ddr3 1600 Mhz 92.1 sec 0%

IvyBridge
(endeavor)

24 cores Intel Xeon
E5-2697v2@2.7GHz

ddr3 1600 Mhz 67.1 sec 27%

Haswell-EP
(endeavor)

28 cores Intel Xeon
E5-2697v3@2.6Ghz

ddr4 2100 Mhz 57.4 sec 38%

16th Workshop on High Performance Computing
in Meteorology

FIM model dynamics performance
(200 km, 64 levels, 10000 grid points, 1

node)
Routine SNB time (s) MIC time (s)

main_loop 19.658 36.600

dynamics 16.072 32.104

hybgen 4.532 5.818

edgvar1-2 4.459 10.784

cnuity 2.033 2.079

trcadv 3.689 3.803

cpl_run 3.558 4.183

16th Workshop on High Performance Computing
in Meteorology

Claim based on FIM results

• “Reasonable” performance on MIC can be
expected (compared to host) if code meets
these criteria:

– Highly parallel (e.g. > 99%)

– Enough thread contexts can be employed to keep
all cores busy

– Threaded loops contain enough work to amortize
thread start-up and synchronization

– Good inner loop vectorization

16th Workshop on High Performance Computing
in Meteorology

Symmetric mode load balancing

16th Workshop on High Performance Computing
in Meteorology

name ncalls nranks mean_time std_dev wallmax (rank) wallmin (rank)

Diag 1002 2 3.314 1.979 4.713 (0) 1.914 (1)

MainLoop 2 2 50.294 0.176 50.419 (0) 50.170 (1)

ZeroTendencies 200 2 0.093 0.022 0.108 (0) 0.077 (1)

SaveFlux 200 2 0.149 0.052 0.186 (0) 0.112 (1)

Dyntnc 800 2 38.277 1.794 39.546 (1) 37.009 (0)

RHStendencies 800 2 0.419 0.139 0.518 (0) 0.321 (1)

Vdm 800 2 23.368 2.984 25.478 (0) 21.258 (1)

Vdmintv 800 2 6.462 0.282 6.661 (0) 6.262 (1)

Vdmints0 800 2 5.567 0.693 6.057 (0) 5.076 (1)

Vdmints3 800 2 8.506 1.037 9.240 (0) 7.773 (1)

vdmfinish 800 2 2.820 0.986 3.517 (0) 2.122 (1)

Vdn 800 2 1.806 0.224 1.965 (0) 1.648 (1)

Flux 800 2 3.676 0.105 3.750 (0) 3.601 (1)

Force 800 2 1.650 0.071 1.700 (0) 1.600 (1)

RKdiff 800 2 1.411 0.197 1.551 (0) 1.271 (1)

TimeDiff 800 2 0.706 0.237 0.873 (0) 0.538 (1)

Sponge 800 2 0.365 0.088 0.427 (0) 0.303 (1)

pre_trisol 200 2 0.139 0.019 0.153 (1) 0.126 (0)

Trisol 200 2 0.416 0.114 0.497 (0) 0.336 (1)

post_trisol 200 2 0.076 0.004 0.079 (0) 0.073 (1)

Vdmints 200 2 3.499 0.303 3.714 (0) 3.285 (1)

Pstadv 200 2 0.792 0.029 0.813 (1) 0.772 (0)

Symmetric mode load balancing
(cont’d)

name ncalls nranks mean_time std_dev wallmax (rank) wallmin (rank)

Diag 5010 10 2.494 1.070 3.766 (0) 1.616 (9)

MainLoop 10 10 47.567 0.111 47.697 (2) 47.480 (8)

ZeroTendencies 1000 10 0.071 0.009 0.094 (0) 0.063 (1)

SaveFlux 1000 10 0.103 0.022 0.135 (2) 0.078 (4)

Dyntnc 4000 10 37.124 0.889 37.863 (7) 36.022 (0)

RHStendencies 4000 10 0.316 0.042 0.357 (1) 0.243 (9)

Vdm 4000 10 22.724 2.322 24.622 (9) 19.964 (3)

Vdmintv 4000 10 6.513 1.062 7.361 (8) 5.253 (3)

Vdmints0 4000 10 5.506 0.637 6.026 (9) 4.749 (3)

Vdmints3 4000 10 8.442 1.002 9.389 (9) 7.264 (1)

vdmfinish 4000 10 2.243 0.394 2.726 (0) 1.815 (9)

Vdn 4000 10 1.623 0.101 1.710 (8) 1.451 (3)

Flux 4000 10 3.629 0.509 4.053 (4) 3.020 (0)

Force 4000 10 1.487 0.147 1.639 (9) 1.299 (2)

RKdiff 4000 10 1.074 0.108 1.202 (1) 0.913 (6)

TimeDiff 4000 10 0.583 0.060 0.665 (0) 0.520 (6)

Sponge 4000 10 0.284 0.007 0.299 (0) 0.274 (1)

pre_trisol 1000 10 0.076 0.009 0.088 (0) 0.064 (9)

Trisol 1000 10 0.392 0.006 0.400 (2) 0.385 (9)

post_trisol 1000 10 0.057 0.009 0.065 (7) 0.045 (3)

Vdmints 1000 10 3.493 0.482 3.900 (9) 2.918 (3)

Pstadv 1000 10 0.803 0.162 0.944 (4) 0.611 (1)

16th Workshop on High Performance Computing
in Meteorology

Two simple but important mods
affecting host and KNC performance

Runtime PRIOR to code mods (sec)

Routine SNB KNC

diag 6.2 1.5

trisol 0.5 1.5

16th Workshop on High Performance Computing
in Meteorology

Runtime AFTER code mods (sec)

Routine SNB KNC

diag 4.7 1.4

trisol 0.5 0.4

Host compiler issue (diag.F90)

• Vector loop gets fused with scalar loop:
! Line 93: This loop cannot vectorize due to a dependency

do k=nz-1,0,-1

p(k,ipn) = p(k+1,ipn) + pdel(k+1)

end do

! Line 111: This loop can easily vectorize

do k=1,nz

term(k) = rd*tr(k,ipn)*1.e-5_rt

end do

diag.f90(93): (col. 5) remark: loop was not vectorized: existence of vector dependence

Fused Loops: (93 111)

• Solution: add “nofusion” directives to
unvectorizable loops:

! Line 93: This loop cannot vectorize due to a dependency

!DIR$ NOFUSION

do k=nz-1,0,-1

p(k,ipn) = p(k+1,ipn) + pdel(k+1)

end do

16th Workshop on High Performance Computing
in Meteorology

MIC compiler issue (trisol.F90)

• Vector loop gets fused with scalar loop:
! Line 97: This loop can vectorize even though it has many computations

do k=1,nz-1

kp1 = k+1

km1 = k-1

thkp1 = .5_rt*(bedgvar(kp1,ipn,6)+bedgvar(k,ipn,6))

thkp = .5_rt*(bedgvar(km1,ipn,6)+bedgvar(k,ipn,6))

... Lots more vectorizable code

end do

...

! Line 139: This loop cannot vectorize because there is a dependency (w1d)

do k=2,nz

alpha = 1._rt/(bbb(k)-aaa(k)*gama(k-1))

gama(k) = ccc(k)*alpha

w1d(k) = (rrr(k)-aaa(k)*w1d(k-1))*alpha

end do

• ifort -opt-report-phase=hlo -vec-report6 says:
fused Loops: (97 139)

fused Loops: (84 97)

trisol.f90(84): (col. 3) remark: loop was not vectorized: existence of vector dependence

16th Workshop on High Performance Computing
in Meteorology

MIC compiler issue (trisol.F90 cont’d)

• Solution: add “nofusion” directive to
unvectorizable loop:

! Line 139: Disallow loop fusion of unvectorizable loop

!DIR$ NOFUSION

do k=2,nz

alpha = 1._rt/(bbb(k)-aaa(k)*gama(k-1))

gama(k) = ccc(k)*alpha

w1d(k) = (rrr(k)-aaa(k)*w1d(k-1))*alpha

end do

trisol.f90(84): (col. 3) remark: FUSED LOOP WAS VECTORIZED

16th Workshop on High Performance Computing
in Meteorology

Improving thread scaling

• Original code (packs/unpacks MPI messages around
sends/recvs):

do varNumber = 1,IVRBL ! Number of variables (typically around 4)

var => exchPtr(varNumber)%varptr

do n = 1,NumSendsOrRecvs ! Number of neighbors (typically 6-7)

!$OMP PARALLEL DO PRIVATE (jindirect, offset, i)

do j = 1,numberToPackOrUnpk(n,varNumber) ! Number of grid points (typically
O(1000))

jindirect = varIndexes(j,n,varNumber)

offset = bufIndexes(j,n,varNumber)

if(pack) then !Pack the buffer

do i = js(varNumber),je(varNumber)

buffer(i+offset,n) = var(i,jindirect)

enddo

else ! Unpack the buffer

do i = js(varNumber),je(varNumber)

var(i,jindirect) = buffer(i+offset,n)

enddo

endif

enddo

enddo

enddo

16th Workshop on High Performance Computing
in Meteorology

Improving thread scaling (cont’d)
• Modified code code: threads don’t synchronize until

outer loop completes:
!$OMP PARALLEL PRIVATE (varnumber, var, n, j, jindirect, offset, i)

do varNumber = 1,IVRBL ! Number of variables (typically around 4)

var => exchPtr(varNumber)%varptr

do n = 1,NumSendsOrRecvs ! Number of neighbors (typically 6-7)

!$OMP DO

do j = 1,numberToPackOrUnpk(n,varNumber) ! Number of grid points (typically
O(1000))

jindirect = varIndexes(j,n,varNumber)

offset = bufIndexes(j,n,varNumber)

if (pack) then ! Pack the send buffer from user space

do i = js(varNumber),je(varNumber)

buffer(i+offset,n) = var(i,jindirect)

enddo

else ! Unpack the recv buffer into user space

do i = js(varNumber),je(varNumber)

var(i,jindirect) = buffer(i+offset,n)

enddo

endif

enddo

!$OMP END DO NOWAIT

enddo

enddo

!$OMP END PARALLEL

16th Workshop on High Performance Computing
in Meteorology

Compile-time vs. run-time array sizing
and loop bounds specification (SNB)

16th Workshop on High Performance Computing
in Meteorology

module resolution

#ifdef RUNTIME

integer :: nz ! Set at run-time

#else

integer, parameter :: nz = NZ ! cpp sets at compile-time

#endif

end module resolution

NIM performance compile-time vs.
run-time array sizing and loop bounds

specification (SNB)

16th Workshop on High Performance Computing
in Meteorology

Routine Run-time (sec) Compile-time (sec) % speedup

Total 54.102 45.002 16.8%

vdmints3 10.271 7.576 26.2%

vdmints0 5.987 5.547 7.3%

vdmintv 6.663 6.186 7.2%

NIM performance compile-time vs.
run-time array sizing and loop bounds

specification (MIC)

16th Workshop on High Performance Computing
in Meteorology

Routine Run-time (sec) Compile-time (sec) % speedup

Total 44.681 39.115 12.5%

vdmints3 7.975 6.389 19.9%

vdmints0 5.120 4.303 16.0%

vdmintv 6.432 5.257 18.2%

Validation

• NIM dynamics can be made to produce bitwise-identical
answers Xeon vs. MIC if canonical transcendental functions
are used.
– No reductions which feed back into model calculations (vector,

OMP, or MPI)

• Software constraint: NIM must produce bitwise identical
answers across varying MPI task counts
– -fp-model precise required on host compilation

• Intel provided us prototype math libraries for Xeon and Phi
that produce bitwise identical results for transcendental
functions (e.g. exp, log, pow, sin, cos). The library is not
performance optimized, but allows us to unambiguously
validate the port to Phi.

16th Workshop on High Performance Computing
in Meteorology

G6K96 (100 km) relative cost compute
vs. communicate on SNB

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 nodes 10 nodes 40 nodes

Communicate

Compute

16th Workshop on High Performance Computing
in Meteorology

G6K96 (100 km) relative cost compute
vs. communicate on MIC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 nodes 10 nodes 40 nodes

Communicate

Compute

16th Workshop on High Performance Computing
in Meteorology

Where Next?

• Further enhance communication

– Why is pack/unpack performance still slower on
MIC vs. SNB?

– Try replacing MPI_Isend with MPI_Irsend since
message sizes are large?

– Rewrite MPI calls to avoid pack/unpack
(exploratory work by Jacques Middlecoff)

• GFS physics in FIM

16th Workshop on High Performance Computing
in Meteorology

Summary

• Full NIM dynamical core ported and validated on
Xeon Phi using symmetric mode
– Scientists are working on topography

• FIM dynamical core ported to MIC. Answers
“probably” correct (validation pending)

• Single-source for CPU, Phi, GPU
• Dynamics running reasonably well on Phi (NIM

performance matches IVB node)
• Inter-process comms are biggest performance

challenge on MIC, GPU

16th Workshop on High Performance Computing
in Meteorology

Backup slides

16th Workshop on High Performance Computing
in Meteorology

Pack/Unpack timing results (1 rank per
device, total runtime around 50 sec)

16th Workshop on High Performance Computing
in Meteorology

Architecture OLD Pack/Unpack
time (s)

NEW Pack/Unpack
time(s)

% speedup

SNB 0.39 0.35 10%

MIC 0.71 0.50 29%

Primary changes to NIM dynamics in
2014

• Truly single-source for CPU/KNC/GPU
– Constraint: mods to 1 architecture cannot degrade performance on another
– Very few architecture-specific ifdefs

• Ability to run in real*8 mode (Tom Henderson)
• Compute rather than read in giant arrays on initialization

– Allows high resolution runs

• Special transcendental libraries allow bitwise-exact results host vs. KNC
(thanks to Intel math libraries team)

• Changes to SMS library improve communication performance (Jacques
Middlecoff)
– Better threading helps CPU/KNC
– Fewer kernel calls helps GPU

• Mods to diag.F90, trisol.F90 improve performance on CPU/GPU/KNC

16th Workshop on High Performance Computing
in Meteorology

Multi-core performance (32-bit)

• Peak on SNB: 16 cores * 8 flops/clock/core * 2 vector
instructions * 2.6 GHz = 665.6 Gflops/s

• NIM observed on SNB: 1.63e12 flops / 22.423 sec / 665.6e9
peak flops= 11% of peak

• Peak on KNC: 61 cores * 16 flops/clock/core * 1.238 GHz =
2.416 Tflops/s

• NIM observed on KNC: 1.63e12 flops / 22.254 sec /
2.416e12 peak flops/s = 3% of peak

• NIM observed on K20X GPU: 1.63e12 flops / 17.924 sec /
3.95e12 peak flops/s = 2% of peak

16th Workshop on High Performance Computing
in Meteorology

Dynamics

• Solves equations of motion for large-scale
flow

• Little dependence in vertical

– Fortran array organization is (vertical,horizontal)

• Computational cost grows as the cube of the
inverse horizontal grid spacing

16th Workshop on High Performance Computing
in Meteorology

General looping structure in NIM
dynamics

!ACC$DO PARALLEL(1)

!$OMP PARALLEL DO PRIVATE(k,isn,ipp,isp,fx1,fx2,fx5,fx,kp1,vnkm1,vnk,upfx1,upfx2,upfx3)

do ipn=ips,ipe

!ACC$DO VECTOR(1)

do k=1,nz

fx1(k) = 0.

fx2(k) = 0.

fx5(k) = 0.

end do

do isn=1,nprox(ipn) ! loop thru edges getting fluxes

ipp=prox(isn,ipn)

isp=proxs(isn,ipn)

!ACC$DO VECTOR(1)

do k=1,nz

tefr (k,isn,ipn) = .5*(vdns(k,isp,ipp)+abs(vdns(k,isp,ipp))) &

- .5*(vdns(k,isn,ipn)+abs(vdns(k,isn,ipn)))

fx1(k) = fx1(k)+.5*(vdns(k,isn,ipn)+abs(vdns(k,isn,ipn)))*sedgvar(k,isn,ipn,1)*sa(k,isn,ipn) &

-.5*(vdns(k,isp,ipp)+abs(vdns(k,isp,ipp)))*sedgvar(k,isp,ipp,1)*sa(k,isp,ipp)

fx2(k) = fx2(k)+.5*(vdns(k,isn,ipn)+abs(vdns(k,isn,ipn)))*sedgvar(k,isn,ipn,2)*sa(k,isn,ipn) &

-.5*(vdns(k,isp,ipp)+abs(vdns(k,isp,ipp)))*sedgvar(k,isp,ipp,2)*sa(k,isp,ipp)

fx5(k) = fx5(k)+.5*(vdns(k,isn,ipn)+abs(vdns(k,isn,ipn)))*sedgvar(k,isn,ipn,5)*sa(k,isn,ipn) &

-.5*(vdns(k,isp,ipp)+abs(vdns(k,isp,ipp)))*sedgvar(k,isp,ipp,5)*sa(k,isp,ipp)

end do

end do ! end of loop through edges getting fluxes

16th Workshop on High Performance Computing
in Meteorology

NIM Porting Methodology for
symmetric mode on Phi

• Hybrid OpenMP/MPI

– NIM was already parallelized for MPI => add OMP

• Modify compiler flags

– Add –mmic for MIC build

– Remove –fpe0

• Build a second executable as normal for Xeon

– Required libraries (SMS, GPTL) also needed separate
compilations

• stampede: ibrun –c <host_path> -m <mic_path>

16th Workshop on High Performance Computing
in Meteorology

Optimizations for Phi

• Ensure that inner loops vectorize
• Ensure good thread scaling
• Alignment: -align array64byte

– Add !DIR$ ASSUME_ALIGNED where appropriate

• Try other flags for optimization
– –opt-streaming-stores always (memory bound codes)

• Vary from default OMP settings
– OMP_SCHEDULE=guided (vs. static or dynamic,…)
– KMP_AFFINITY=balanced (vs. scatter or compact)

• Replace divides with multiply by reciprocal

16th Workshop on High Performance Computing
in Meteorology

NIM thread scaling on SNB

16th Workshop on High Performance Computing
in Meteorology

Weak scaling on Phi

0

50

100

150

200

250

G6(10 MPI) G7(40 MPI) G8(160 MPI)

Communicate

Compute

16th Workshop on High Performance Computing
in Meteorology

NIM strong scaling symmetric mode

16th Workshop on High Performance Computing
in Meteorology

Weak scaling on SNB

0

50

100

150

200

250

G6(10 MPI) G7(40 MPI) G8(160 MPI) G9(640 MPI)

Communicate

Compute

16th Workshop on High Performance Computing
in Meteorology

