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Outline

 The HPC Imperative
* Next-Generation Global Prediction System
o Accelerators and NWP
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HPC Imperative

* NWP is one of the first HPC applications and, with climate,
has been one its key drivers

» Exponential growth in HPC capabillity has translated directly to
better forecasts and steadily improving value to the public
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HPC Imperative

* NWP is one of the first HPC applications and, with climate,
has been one its key drivers
— Exponential growth in HPC capability has translated directly to
better forecasts and steadily improving value to the public
« HPC growth continues toward Peta-/Exaflop, but only
parallelism is increasing
— More floating point capability
— Proportionately less cache, memory and I/O bandwidth
» Parallelism scales in one fewer dimension than complexity
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HPC Imperative
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** T1534 GFS will be implemented operationally in Dec. 2014 to use 1856 WCOSS cores, 64 vertical levels and
DT=450s. The plotted point is adjusted to 2855 cores, 128 levels and a 600 s time step to conform to planned
higher-resolution configurations.
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HPC Imperative
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HPC Imperative

« NWP is one of the first HPC applications and, with climate,
has been one its key drivers
— Exponential growth in HPC capability has translated directly to
better forecasts and steadily improving value to the public
« HPC growth continues toward Peta-/Exaflop, but only
parallelism is increasing
— More floating point capability
— Proportionately less cache, memory and 1/0O bandwidth
— Parallelism scales in one fewer dimension than complexity
» Ensembles scale computationally but move problem to I/O
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HPC Imperative

Deterministic versus Ensemble Output Volumes .. .

3.5
—Ensemble (res. 10km)

—Deterministic (10 - 3 km)

M w
(9] o

Terabytes
[a¥]
o

Deterministic

=
)

1.0

Deterministic
0.5 (10 KM)

200,000 250,000

0.0
50,000 100,000 150,000
WCOQOSS Cores

NOAA/NW S/Environmental Modeling Center




HPC Imperative

« NWP is one of the first HPC applications and, with climate,
has been one its key drivers

— Exponential growth in HPC capability has translated directly to
better forecasts and steadily improving value to the public

« HPC growth continues toward Peta-/Exaflop, but only
parallelism is increasing
— More floating point capability
— Proportionately less cache, memory and I/0O bandwidth
— NWP parallelism scales in one fewer dimension than complexity
— Ensembles scale computationally but move problem to 1/0O

e Can operational NWP stay on the HPC train?
» Expose + exploit all available parallelism, especially fine-grain
» More scalable formulations

NOAA/NW S/Environmental Modeling Center



Next-Generation Global Prediction System

 Response to Hurricane Sandy (2012):
— $14.8M /5 year Research to Operations (R20) Initiative
— Produce state-of-the-art prediction system, NGGPS, by 2018

» Goals: Meet evolving national requirements over next 15-20 years
— Global high-resolution weather prediction (3-10km)
— High-impact weather: hurricanes, severe storms (0.5-2km nesting)
— Extend skill to 30 days, seasonal climate
— Coupled ocean-atmosphere-ice-wave modeling system
— Ensemble forecasting and data assimilation
— Aerosol forecasting, others

 Needed
» New non-hydrostatic dynamics scalable to O(100K) cores
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Next-Generation Global Prediction System

Task: New Scalable Non-hydrostatic Dynamical Core
(in 5 years??)

e Use a model already under development
— Coordinate with HIWPP program (Tim Schneider’s talk)
— Select from 5 candidate models + current system:

Model Organization Numeric Method Grid
NIM NOAA/ESRL Finite Volume Icosahedral
MPAS NCAR/LANL Finite Volume Icosahedral/Unstructured
NEPTUNE Navy/NRL Spectral Element Cubed-Sphere with AMR
HIRAM/FV-3 NOAA/GFDL Finite Volume Cubed-Sphere, nested
NMMB NOAA/EMC Finite difference/Polar Filters Cartesian, Lat-Lon
GFS-NH ** NOAA/EMC Semi-Lagrangian/Spectral Reduced Cartesian
&gﬁ ** current operational baseline, non-hydrostatic option under development
%
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Next-Generation Global Prediction System

Time Line for NGGPS Evaluation and Selection
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Next-Generation Glabal Prediction System
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NGGPS Level-1 Benchmarking Plan

« Advanced Computing Evaluation Committee:
— Co-Chairing with Mark Govett (NOAA/ESRL)

« Investigate and report near-term and lifetime prospects for
performance and scaling of NGGPS candidate models
— Test case:
» Idealized global baroclinic wave
* Monotonically constrained advection of ten tracer fields
« Atrtificially generated initial “checkerboard” patterns

— Two workloads:

« 13km “performance” workload — resources needed to meet operational
requirements (8.5 minutes/day)

» 3km workload measure scalability out to ~150K cores
— All conventional multi-core (no accelerators)

» Verification
— Reproduce baseline solution statistics for each model
— Return output from runs for additional verification and validation

« Additional evaluation of software design and readiness for HPC
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NGGPS Level-1 Benchmarking Plan

Benchmark systems

— Edison: National Energy Research Scientific Computing Center (DOE/BNL)
133,824 cores, Xeon lvy Bridge, 24 cores per node
Four million discretionary hours awarded
— Stampede: Texas Advanced Computing Center (NSF)
102,400 cores, Xeon Sandy Bridge), 16 cores per node
— Pleiades: NASA/Ames Research Center
108,000 cores, Xeon lvy Bridge, 20 cores per node
Possibility of ~100,000 cores of Xeon Haswell by benchmarking time
— Yellowstone: National Center for Atmospheric Research (NSF)
72,000 cores, Xeon Sandy Bridge, 16 cores per node
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Scaling Operational NWP (Summary)

o Will have NGGPS Level-1 Benchmark results Spring ‘15

* But we know the long-term future for deterministic global
forecast models:
— Scaling will eventually run out
— We aren’t there yet

 Which models make the most of headroom there is:

— Chose models with the best weak scaling characteristics

* Don’t give up anything on number of time-steps per second

* Nearby communication patterns instead of non-local
— Take longest time step possible

« Semi-Lagrangain gives 5x DT, but trades accuracy for stability

» Do skill immprovements translate to convective scales?

* Need for embedded high-res. models: nesting or Panta Rhei approach
— Make effective core speeds faster

» Exploit more parallelism: vertical, tracers, and esp. fine-grained
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Effect of Fine-grained optimization on
RRTMG* radiative transfer physics

» Accurate calculation of fluxes and
cooling rates from incoming
(shortwave) and outgoing (longwave)
radiation

e Used in many weather and climate
models
— NCAR WRF and MPAS
— NCAR CAMS5 and CESM1
— NASA GEOS-5
— NOAANCEP GFS, CFS, RUC
— ECMWF

» Significant computational cost

— Coded as 1-D vertical columns but poor
vectorization in this dimension

One column of a weather or climate model domain

https://www.aer.com/science-research/atmosphere/radiative-transfer

(*lacono et al. JGR, 2008; Mlawer et al., JGR, 1997)
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Performance results: RRTMG Kernel on Xeon
Phi and host Xeon (SNB)

Workload

e 1 node of 80 node NMMB run 45
e 4km CONUS domain

* 1 RRTMG invocation
e 18819 columns, 60 levels 35 ot
- 46.5 billion DP floating point ops

40

1.2x on Xeon

-----

——3.5x on KNC

30 =
25 gt
@ —=—2xSNB dp (best)
. G ——MIC dp (best
Code restructuring 20 P
-==2xSNB dp orig
* Increase concurrency 15 ===MIC orig
* Increase vectorization o /
« Decrease memory system pressure £
» Performance improves on host too 2
0
0% 25% 50% 75% 100%

Thread Subscription

&\@

&
g
%o
‘pO

*"ﬂwummcd*ﬁ 19 NOAA/NW S/Environmental Modeling Center



Restructuring RRTMG in NMM-B

west -- east

A

v

e Concurrency and locality

— Original RRTMG called in
OpenMP threaded loop over
South-North dimension

991 [[ed

» Vectorization
— Originally vertical pencils
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Restructuring RRTMG in NMM-B

e Concurrency and locality

— Original RRTMG called in | \
OpenMP threaded loop over [ _ |

South-North dimension 3 A e R B B
— Rewrite loop to iterate over (RIRININ | ‘ ‘
tiles in two dimensions -

— Dynamic thread scheduling 5
 Vectorization ) -
— Originally vertical pencils " ““"\.n,“ l =N
— Extend inner dimension of | “, “\“.\ ' S
lowest-level tiles to width of = '
SIMD unit on KNC .
— Static definition of VECLEN :
swilux § g
1:VECLEN 8
one thread
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Effect of Fine-grained optimization on
RRTMG radiative transfer physics

e |mprovement

— 2.8x Overall -
e 5.3xin SWRAD 30
e 0.75x in LWRAD (degraded) e
* Increasing chunk size results in
— 2.5x increase in working set size ‘gz'o
from 407KB to 1034KB per thread 8 s
— 4xincrease in L2 misses
e Memory traffic -’
— Increased from 59 to 124 GB/s, still 05
short of saturation o
— Key bottlenecks CHUNK=1 CHUNK=8 + Other Optim.
° Memorykatﬂy Bswflux O swrad-swflux Blwrad ®other

 Instruction pipeline stalls around
hardware division instruction

Michalakes, lacono, Jessup. Optimizing Weather Model Radiative Transfer
Physics for Intel's Many Integrated Core (MIC), Architecture. Preprint.
http://www.Michalakes.us/michalakes_2014_web_preprint.pdf
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Comparison to GPU Performance (32-bit; shortwave)
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Outlook for accelerators

e For now, neither GPU nor current MIC generation are
compelling compared with conventional multi-core Xeon
— Improving performance on MIC leads to faster Xeon performance

* Next release of Xeon Phi: Knights Landing
— Hostless, no PCI gulf
« NERSC'’s “Cori” system (mid 2016): 9,300 single socket KNL nodes

— On-package memory
 5x Stream Triad bandwidth over DDR4

— More powerful cores
« Out-of-order, advanced branch prediction, AVX-512 ISA
» Overall 3x faster single-thread performance (workload dependent)

— Other improvements (NDA)
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Outlook for NWP on HPC

e Deterministic forecasting will stall eventually but still has
headroom

* Recast or develop new modeling systems that emphasize
parallelism and locality

e Continue to investigate hardware and programming models
that provide highest possible flops per second-dollar-watt

* Increased computing power will continue to add value
through other approaches (ensembles, data assimilation,
coupled systems)

NOAA/NW S/Environmental Modeling Center
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