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Outline

• The HPC Imperative
• Next-Generation Global Prediction System
• Accelerators and NWP
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HPC Imperative

• NWP is one of the first HPC applications and, with climate, 
has been one its key drivers
 Exponential growth in HPC capability has translated directly to 

better forecasts and steadily improving value to the public
• HPC growth continues toward Peta-/Exaflop, but only 

parallelism is increasing
– More floating point capability
– Proportionately less cache, memory and I/O bandwidth
 Parallelism scales in one fewer dimension than complexity
 Ensembles scale computationally but move problem to I/O

• Can operational NWP stay on the bus?
– More scalable formulations
– Expose and exploit all available parallelism, especially fine-grain

Fred Toepferand Ed M
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** T1534 GFS will be implemented operationally in Dec. 2014 to use 1856 WCOSS cores, 64 vertical levels and 
DT=450s.  The plotted point is adjusted to 2855 cores, 128 levels and a 600 s time step to conform to planned 
higher-resolution configurations.
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Next-Generation Global Prediction System

• Response to Hurricane Sandy (2012):
– $14.8M / 5 year Research to Operations (R2O) Initiative
– Produce state-of-the-art prediction system, NGGPS, by 2018

• Goals: Meet evolving national requirements over next 15-20 years
– Global high-resolution weather prediction (3-10km)
– High-impact weather: hurricanes, severe storms (0.5-2km nesting)
– Extend skill to 30 days, seasonal climate 
– Coupled ocean-atmosphere-ice-wave modeling system
– Ensemble forecasting and data assimilation
– Aerosol forecasting, others

• Needed
 New non-hydrostatic dynamics scalable to O(100K) cores
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Next-Generation Global Prediction System

Task: New Scalable Non-hydrostatic Dynamical Core

(in 5 years??)
• Use a model already under development

– Coordinate with HIWPP program (Tim Schneider’s talk) 
– Select from 5 candidate models + current system:

Model Organization Numeric Method Grid
NIM NOAA/ESRL Finite Volume Icosahedral

MPAS NCAR/LANL Finite Volume Icosahedral/Unstructured

NEPTUNE Navy/NRL Spectral Element Cubed-Sphere with AMR

HIRAM/FV-3 NOAA/GFDL Finite Volume Cubed-Sphere, nested

NMMB NOAA/EMC Finite difference/Polar Filters Cartesian, Lat-Lon

GFS-NH ** NOAA/EMC Semi-Lagrangian/Spectral Reduced Cartesian

** current operational baseline, non-hydrostatic option under development



13 NOAA/NWS/Environmental Modeling Center

Next-Generation Global Prediction System

• Non-hydrostatic Dynamical core
– Coordinating with HIWPP program (Tim Schneider’s 

presentation) 
• Select from 5 existing models:

Model Organization Numeric Method Grid
NIM NOAA/ESRL Finite Volume Icosahedral

MPAS NCAR/LANL Finite Volume Icosahedral/Unstructured

NEPTUNE Navy/NRL Spectral Element Cubed-Sphere with AMR

HIRAM/FV-3 NOAA/GFDL Finite Volume Cubed-Spere, nested

NMMB NOAA/EMC Finite difference/Polar Filters Cartesian, Lat-Lon

GFS-NH ** NOAA/EMC Semi-Lagrangian/Spectral Reduced Cartesian

** current operational baseline, non-hydrostatic option under development



14 NOAA/NWS/Environmental Modeling Center

Next-Generation Global Prediction System

• Non-hydrostatic Dynamical core
– Coordinating with HIWPP program (Tim Schneider’s 

presentation) 
• Select from 5 existing models:

Model Organization Numeric Method Grid
NIM NOAA/ESRL Finite Volume Icosahedral

MPAS NCAR/LANL Finite Volume Icosahedral/Unstructured

NEPTUNE Navy/NRL Spectral Element Cubed-Sphere with AMR

HIRAM/FV-3 NOAA/GFDL Finite Volume Cubed-Spere, nested

NMMB NOAA/EMC Finite difference/Polar Filters Cartesian, Lat-Lon

GFS-NH ** NOAA/EMC Semi-Lagrangian/Spectral Reduced Cartesian

** current operational baseline, non-hydrostatic option under development

Fi
na

l 
do

w
n-

se
le

ct

In
iti

al
do

w
n-

se
le

ct

Initial down-selection from 5 to 2 cores 
will be based on performance and 

scaling benchmarks out to ~100K cores
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NGGPS Level-1 Benchmarking Plan

• Advanced Computing Evaluation Committee:
– Co-Chairing with Mark Govett (NOAA/ESRL)

• Investigate and report near-term and lifetime prospects for 
performance and scaling of NGGPS candidate models

– Test case:
• Idealized global baroclinic wave
• Monotonically constrained advection of ten tracer fields 
• Artificially generated initial “checkerboard” patterns

– Two workloads:
• 13km “performance” workload – resources needed to meet operational 

requirements (8.5 minutes/day)
• 3km workload measure scalability out to ~150K cores

– All conventional multi-core (no accelerators)

• Verification
– Reproduce baseline solution statistics for each model
– Return output from runs for additional verification and validation

• Additional evaluation of software design and readiness for HPC
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NGGPS Level-1 Benchmarking Plan

Benchmark systems 
– Edison: National Energy Research Scientific Computing Center (DOE/BNL)

133,824 cores, Xeon Ivy Bridge, 24 cores per node
Four million discretionary hours awarded

– Stampede:  Texas Advanced Computing Center (NSF)
102,400 cores, Xeon Sandy Bridge), 16 cores per node 

– Pleiades: NASA/Ames Research Center
108,000 cores, Xeon Ivy Bridge, 20 cores per node
Possibility of ~100,000 cores of Xeon Haswell by benchmarking time

– Yellowstone: National Center for Atmospheric Research (NSF)
72,000 cores, Xeon Sandy Bridge, 16 cores per node
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Scaling Operational NWP (Summary)

• Will have NGGPS Level-1 Benchmark results Spring ‘15
• But we know the long-term future for deterministic global 

forecast models: 
– Scaling will eventually run out 
– We aren’t there yet

• Which models make the most of headroom there is:
– Chose models with the best weak scaling characteristics

• Don’t give up anything on number of time-steps per second
• Nearby communication patterns instead of non-local

– Take longest time step possible
• Semi-Lagrangain gives 5x DT, but trades accuracy for stability
• Do skill improvements translate to convective scales?
• Need for embedded high-res. models: nesting or Panta Rhei approach

– Make effective core speeds faster
• Exploit more parallelism: vertical, tracers, and esp. fine-grained
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Effect of Fine-grained optimization on 
RRTMG* radiative transfer physics

• Accurate calculation of fluxes and 
cooling rates from incoming 
(shortwave) and outgoing (longwave) 
radiation

• Used in many weather and climate 
models

– NCAR WRF and MPAS
– NCAR CAM5 and CESM1
– NASA GEOS-5
– NOAA NCEP GFS, CFS, RUC
– ECMWF

• Significant computational cost
– Coded as 1-D vertical columns but poor 

vectorization in this dimension

https://www.aer.com/science-research/atmosphere/radiative-transfer

One column of a weather or climate model domain

(*Iacono et al. JGR, 2008; Mlawer et al., JGR, 1997)

No
Vector!
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Performance results: RRTMG Kernel on Xeon 
Phi and host Xeon (SNB)

Workload
• 1 node of 80 node NMMB run

• 4km CONUS domain

• 1 RRTMG invocation
• 18819 columns, 60 levels
• 46.5 billion DP floating point ops

Code restructuring
• Increase concurrency
• Increase vectorization
• Decrease memory system pressure
• Performance improves on host too
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Restructuring RRTMG in NMM-B

• Concurrency and locality
– Original RRTMG called in 

OpenMP threaded loop over 
South-North dimension

– Rewrite loop to iterate over 
tiles in two dimensions

– Dynamic thread scheduling
• Vectorization

– Originally vertical pencils
– Extend inner dimension of 

lowest-level tiles to width of 
SIMD unit on KNC

– Static definition of VECLEN

west -- east

call tree
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Effect of Fine-grained optimization on 
RRTMG radiative transfer physics

• Improvement
– 2.8x Overall

• 5.3x in SWRAD
• 0.75x in LWRAD (degraded)

• Increasing chunk size results in 
– 2.5x increase in working set size 

from 407KB to 1034KB per thread
– 4x increase in L2 misses

• Memory traffic 
– Increased from 59 to 124 GB/s, still 

short of saturation
– Key bottlenecks

• Memory latency
• Instruction pipeline stalls around 

hardware division instruction

Michalakes, Iacono, Jessup.  Optimizing Weather Model Radiative Transfer 
Physics for Intel's Many Integrated Core (MIC), Architecture.  Preprint. 

http://www.Michalakes.us/michalakes_2014_web_preprint.pdf
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Comparison to GPU Performance (32-bit; shortwave)

Haswell

Sandy Bridge Ivy BridgeMIC 
Knight’s 
Corner



24 NOAA/NWS/Environmental Modeling Center

Outlook for accelerators

• For now, neither GPU nor current MIC generation are 
compelling compared with conventional multi-core Xeon

– Improving performance on MIC leads to faster Xeon performance

• Next release of Xeon Phi: Knights Landing
– Hostless, no PCI gulf

• NERSC’s “Cori” system (mid 2016): 9,300 single socket KNL nodes
– On-package memory

• 5x Stream Triad bandwidth over DDR4
– More powerful cores 

• Out-of-order, advanced branch prediction, AVX-512 ISA
• Overall 3x faster single-thread performance (workload dependent)

– Other improvements (NDA)
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Outlook for NWP on HPC

• Deterministic forecasting will stall eventually but still has 
headroom

• Recast or develop new modeling systems that emphasize 
parallelism and locality

• Continue to investigate hardware and programming models 
that provide highest possible flops per second-dollar-watt

• Increased computing power will continue to add value 
through other approaches (ensembles, data assimilation, 
coupled systems) 
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