NOAA Operational Forecasting and the HPC Imperative

John Michalakes

NOAA/NCEP/Environmental Modeling Center (IM Systems Group) University of Colorado at Boulder

16th ECMWF Workshop on HPC in Meteorology 28 October 2014

NOAA/NWS/Environmental Modeling Center

Outline

- The HPC Imperative
- Next-Generation Global Prediction System
- Accelerators and NWP

NOAA/NWS/Environmental Modeling Center

- NWP is one of the first HPC applications and, with climate, has been one its key drivers
 - Exponential growth in HPC capability has translated directly to better forecasts and steadily improving value to the public

- NWP is one of the first HPC applications and, with climate, has been one its key drivers
 - Exponential growth in HPC capability has translated directly to better forecasts and steadily improving value to the public
- HPC growth continues toward Peta-/Exaflop, but only parallelism is increasing
 - More floating point capability
 - Proportionately less cache, memory and I/O bandwidth
 - Parallelism scales in one fewer dimension than complexity

** T1534 GFS will be implemented operationally in Dec. 2014 to use 1856 WCOSS cores, 64 vertical levels and DT=450s. The plotted point is adjusted to 2855 cores, 128 levels and a 600 s time step to conform to planned higher-resolution configurations.

CURLEND ATMOSPHERE PARTIES

** T1534 GFS will be implemented operationally in Dec. 2014 to use 1856 WCOSS cores, 64 vertical levels and DT=450s. The plotted point is adjusted to 2855 cores, 128 levels and a 600 s time step to conform to planned higher-resolution configurations.

** T1534 GFS will be implemented operationally in Dec. 2014 to use 1856 WCOSS cores, 64 vertical levels and DT=450s. The plotted point is adjusted to 2855 cores, 128 levels and a 600 s time step to conform to planned higher-resolution configurations.

- NWP is one of the first HPC applications and, with climate, has been one its key drivers
 - Exponential growth in HPC capability has translated directly to better forecasts and steadily improving value to the public
- HPC growth continues toward Peta-/Exaflop, but only parallelism is increasing
 - More floating point capability
 - Proportionately less cache, memory and I/O bandwidth
 - Parallelism scales in one fewer dimension than complexity
 - > Ensembles scale computationally but move problem to I/O

- NWP is one of the first HPC applications and, with climate, has been one its key drivers
 - Exponential growth in HPC capability has translated directly to better forecasts and steadily improving value to the public
- HPC growth continues toward Peta-/Exaflop, but only parallelism is increasing
 - More floating point capability
 - Proportionately less cache, memory and I/O bandwidth
 - NWP parallelism scales in one fewer dimension than complexity
 - Ensembles scale computationally but move problem to I/O
- Can operational NWP stay on the HPC train?
 - Expose + exploit all available parallelism, especially fine-grain
 - More scalable formulations

- Response to Hurricane Sandy (2012):
 - \$14.8M / 5 year Research to Operations (R2O) Initiative
 - Produce state-of-the-art prediction system, NGGPS, by 2018
- Goals: Meet evolving national requirements over next 15-20 years
 - Global high-resolution weather prediction (3-10km)
 - High-impact weather: hurricanes, severe storms (0.5-2km nesting)
 - Extend skill to 30 days, seasonal climate
 - Coupled ocean-atmosphere-ice-wave modeling system
 - Ensemble forecasting and data assimilation
 - Aerosol forecasting, others
- Needed
 - > New non-hydrostatic dynamics scalable to O(100K) cores

Task: New Scalable Non-hydrostatic Dynamical Core (in 5 years??)

- Use a model already under development
 - Coordinate with HIWPP program (Tim Schneider's talk)
 - Select from 5 candidate models + current system:

Model	Organization	Numeric Method	Grid
NIM	NOAA/ESRL	Finite Volume	Icosahedral
MPAS	NCAR/LANL	Finite Volume	Icosahedral/Unstructured
NEPTUNE	Navy/NRL	Spectral Element	Cubed-Sphere with AMR
HIRAM/FV-3	NOAA/GFDL	Finite Volume	Cubed-Sphere, nested
NMMB	NOAA/EMC	Finite difference/Polar Filters	Cartesian, Lat-Lon
GFS-NH **	NOAA/EMC	Semi-Lagrangian/Spectral	Reduced Cartesian

** current operational baseline, non-hydrostatic option under development

** current operational baseline, non-hydrostatic option under development

** current operational baseline, non-hydrostatic option under development

NGGPS Level-1 Benchmarking Plan

- Advanced Computing Evaluation Committee:
 - Co-Chairing with Mark Govett (NOAA/ESRL)
- Investigate and report near-term and lifetime prospects for performance and scaling of NGGPS candidate models
 - Test case:
 - Idealized global baroclinic wave
 - Monotonically constrained advection of ten tracer fields
 - Artificially generated initial "checkerboard" patterns
 - Two workloads:
 - 13km "performance" workload resources needed to meet operational requirements (8.5 minutes/day)
 - 3km workload measure scalability out to ~150K cores
 - All conventional multi-core (no accelerators)
- Verification
 - Reproduce baseline solution statistics for each model
 - Return output from runs for additional verification and validation
- Additional evaluation of software design and readiness for HPC

NGGPS Level-1 Benchmarking Plan

Benchmark systems

- Edison: National Energy Research Scientific Computing Center (DOE/BNL) 133,824 cores, Xeon Ivy Bridge, 24 cores per node Four million discretionary hours awarded
- Stampede: Texas Advanced Computing Center (NSF)
 102,400 cores, Xeon Sandy Bridge), 16 cores per node
- Pleiades: NASA/Ames Research Center
 108,000 cores, Xeon Ivy Bridge, 20 cores per node
 Possibility of ~100,000 cores of Xeon Haswell by benchmarking time
- Yellowstone: National Center for Atmospheric Research (NSF) 72,000 cores, Xeon Sandy Bridge, 16 cores per node

Scaling Operational NWP (Summary)

- Will have NGGPS Level-1 Benchmark results Spring '15
- But we know the long-term future for deterministic global forecast models:
 - Scaling will eventually run out
 - We aren't there yet
- Which models make the most of headroom there is:
 - Chose models with the best weak scaling characteristics
 - Don't give up anything on number of time-steps per second
 - Nearby communication patterns instead of non-local
 - Take longest time step possible
 - Semi-Lagrangain gives 5x DT, but trades accuracy for stability
 - Do skill improvements translate to convective scales?
 - Need for embedded high-res. models: nesting or Panta Rhei approach
 - Make effective core speeds faster
 - Exploit more parallelism: vertical, tracers, and esp. fine-grained

Effect of Fine-grained optimization on RRTMG* radiative transfer physics

- Accurate calculation of fluxes and cooling rates from incoming (shortwave) and outgoing (longwave) radiation
- Used in many weather and climate models
 - NCAR WRF and MPAS
 - NCAR CAM5 and CESM1
 - NASA GEOS-5
 - NOAA NCEP GFS, CFS, RUC
 - ECMWF
- Significant computational cost
 - Coded as 1-D vertical columns but poor vectorization in this dimension

One column of a weather or climate model domain

https://www.aer.com/science-research/atmosphere/radiative-transfer

(*Iacono et al. JGR, 2008; Mlawer et al., JGR, 1997)

Performance results: RRTMG Kernel on Xeon Phi and host Xeon (SNB)

Workload

- 1 node of 80 node NMMB run
 - 4km CONUS domain
- 1 RRTMG invocation
 - 18819 columns, 60 levels
 - 46.5 billion DP floating point ops

Code restructuring

- Increase concurrency
- Increase vectorization
- Decrease memory system pressure
- Performance improves on host too

Restructuring RRTMG in NMM-B

Original RR ING called in
 OpenMP threaded loop over
 South-North dimension

- Vectorization
 - Originally vertical pencils

Restructuring RRTMG in NMM-B

• Concurrency and locality

- Original RRTMG called in OpenMP threaded loop over South-North dimension
- Rewrite loop to iterate over tiles in two dimensions
- Dynamic thread scheduling
- Vectorization
 - Originally vertical pencils
 - Extend inner dimension of lowest-level tiles to width of SIMD unit on KNC
 - Static definition of VECLEN

Effect of Fine-grained optimization on RRTMG radiative transfer physics

- Improvement
 - 2.8x Overall
 - 5.3x in SWRAD
 - 0.75x in LWRAD (degraded)
- Increasing chunk size results in
 - 2.5x increase in working set size from 407KB to 1034KB per thread
 - 4x increase in L2 misses
- Memory traffic
 - Increased from 59 to 124 GB/s, still short of saturation
 - Key bottlenecks
 - Memory <u>latency</u>
 - Instruction pipeline stalls around hardware division instruction

Michalakes, Iacono, Jessup. Optimizing Weather Model Radiative Transfer Physics for Intel's Many Integrated Core (MIC), Architecture. Preprint. http://www.Michalakes.us/michalakes_2014_web_preprint.pdf

Comparison to GPU Performance (32-bit; shortwave)

Outlook for accelerators

- For now, neither GPU nor current MIC generation are compelling compared with conventional multi-core Xeon
 - Improving performance on MIC leads to faster Xeon performance
- Next release of Xeon Phi: Knights Landing
 - Hostless, no PCI gulf
 - NERSC's "Cori" system (mid 2016): 9,300 single socket KNL nodes
 - On-package memory
 - 5x Stream Triad bandwidth over DDR4
 - More powerful cores
 - Out-of-order, advanced branch prediction, AVX-512 ISA
 - Overall 3x faster single-thread performance (workload dependent)
 - Other improvements (NDA)

Outlook for NWP on HPC

- Deterministic forecasting will stall eventually but still has headroom
- Recast or develop new modeling systems that emphasize parallelism and locality
- Continue to investigate hardware and programming models that provide highest possible flops per second-dollar-watt
- Increased computing power will continue to add value through other approaches (ensembles, data assimilation, coupled systems)

