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Introduction

Introduction

@ Data assimilation calls for algorithms that often
approximate the Extended Kalman Filter, or EKF, that itself
is too heavy to run

@ ltis essential, but quite non-trivial, that the approximate
Kalman filters used remain stable over the assimilation
period.
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Introduction

Introduction

@ Stability of a filter is related to the numerical stability of the

corresponding algorithm, but numerical stability alone does
not guarantee filter stability.

@ |t is also mandatory that the filter does not diverge from the
true state of the system.

@ Yet all filters applied to nonlinear models will diverge if
there are no observations.
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Introduction

Introduction

@ We study the general conditions for filter stability applicable
to variational methods, and approximate Kalman filters
many kinds ;

@ Present several ways to stabilize filters;
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Introduction

Introduction

@ Provide empirical results with a shallow-water model that
illustrate a relation between ensemble spread and
temporal and spatial density of observations that

@ Generalizes the well-known Courant-Friedrichs-Lewy
numerical stability condition to filter stability in a Hilbert
space setting; and

@ Explain the impact of model bias on filter stability in this
context.
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Ensemble Kalman Filters (EnKF)

Overview

Q Ensemble Kalman Filtering Methods
@ The Extended Kalman Filter (EKF)
@ Ensemble Kalman Filters (EnKF)
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The Extended Kalman Filter (EKF)
Ensemble Kalman Filters (EnKF)

The Extended Kalman Filter (EKF)

Iterate in time
X () = M(t;, ti_1)(x3(ti—1))
P/ = MP?(t;_1)M] +Q
K; = P'(t;)HT (H;P'(t;)HT + R)~"
x2(t) = x'(t;) + Ki(y? — H(x'(1)))
PA(t;) = P'(t) — KHP'(t;)
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Ensemble Kalman Filtering Methods

The Extended Kalman Filter (EKF)
Ensemble Kalman Filters (EnKF)

The Extended Kalman Filter (EKF)

x'(t) is the prediction at time t;

x4(t;) is the analysis at time t;
P/ (%) is the prediction error covariance matrix at time t;
P4(t;) is the analysis error covariance matrix at time {;
Q is the model error covariance matrix
K, is the Kalman gain matrix at time t;
R is the observation error covariance matrix

H is the nonlinear observation operator

H; is the linearized observation operator at time t;
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Ensemble Kalman Filtering Methods

The Extended Kalman Filter (EKF)
Ensemble Kalman Filters (EnKF)

The Extended Kalman Filter (EKF)

@ The model is not assumed to be perfect

@ Model integrations are carried out forward in time with the
nonlinear model for the state estimate and

@ Forward and backward in time with the tangent linear
model and the adjoint model, respectively, for updating the
prediction error covariance matrix

@ There is no minimization, just matrix products and
inversions

@ Computational cost of EKF is prohibitive, because P'(t;)
and P2(t;) are huge full matrices
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Ensemble Kalman Filters (EnKF)

Ensemble Kalman Filters (EnKF)

@ Ensemble Kalman Filters are generally simpler to program
than variational assimilation methods or EKF, because

@ EnKF codes are based on just the non-linear model and do
not require tangent linear or adjoint codes, but they

@ Tend to suffer from slow convergence and therefore
inaccurate analyses because ensemble size is small
compared to model dimension

@ Often underestimate analysis error covariance
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Ensemble Kalman Filters (EnKF)

@ Ensemble Kalman filters often base analysis error
covariance on bred vectors, i.e. the difference between
ensemble members and the background, or the ensemble
mean

@ One family of EnKF methods is based on perturbed
observations, while

@ Another family uses explicit linear transforms to build up
the ensemble
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The Extended Kalman Filter (EKF)
Ensemble Kalman Filters (EnKF)

EnKF Cost functions

Algorithm

Minimize

(P(t))™" = (8Bo + (1 - ﬁ)1N)("(i‘;))(f(l‘f)T)’1

Algorithm

Minimize
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Overview

e The Variational Ensemble Kalman Filter (VEnKF)
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The Variational Ensemble Kalman Filter (VEnKF)

Algorithm

Iterate in time

Step 0: Select a state x?(ty) and a covariance P4(t,) and
seti=1

Step 1: Evolve the state and the prior covariance estimate:
(i) Compute X' (1)) = M(t;, ti_1)(x3(ti_1));
(ii) Compute the ensemble forecast
X'(t)) = M(t;, ti_1)(X3(ti—1));

(iii) Minimize from a random initial guess

(P(t)) ™" = (BBo + (1 — B) A X ()X ()T + Q)"
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The Variational Ensemble Kalman Filter (VEnKF)

Algorithm
Step 2: Compute the Variational Ensemble Kalman Filter
posterior state and covariance estimates:
(i) Minimize
o(xa(t)|y?)
= (\;?’—H( x2())) TR~ (y? —H(x2(t)))
+(x () —x2(1))T(P'(1;)) ! ( (1) —x2(t))
by the LBFGS method;

(i) Store the result of the minimization as x4(t;);
(iii) Store the limited memory approximation to P3(t;);
(iv) Generate a new ensemble Xa(t;) ~ N(x4(t;), Pa(t));
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The Variational Ensemble Kalman Filter (VEnKF)

@ Follows the algorithmic structure of VKF, separating the
time evolution from observation processing.

@ A new ensemble is generated every observation step

@ Bred vectors are centered on the mode, not the mean, of
the ensemble, as in Bayesian estimation

@ Like in VKF, a new ensemble and a new error covariance
matrix is generated at every observation time

@ No covariance leakage
@ No tangent linear or adjoint code
@ Asymptotically equivalent to VKF and therefore EKF when
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Stability and Trajectory Shadowing A CFL like condition on filter stability

Overview

e Stability and Trajectory Shadowing
@ Regularization implicit in Kalman filtering
@ A CFL like condition on filter stability
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Stability and Trajectory Shadowing A CFL like condition on filter stability

Kalman filtering with a biased model

@ Having a biased model means that the model produces a
forecast error with non-zero mean. In this case, our model
equations:

x(t;) = M(t, ti—1)(X(ti—1)) + () J

@ entail that the expectation of model error is non-zero, but
generally unknown, and can locally at t; be approximated
by a linear error.
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Stability and Trajectory Shadowing A CFL like condition on filter stability

Kalman filtering with a biased model

@ This reads as

E(n(t)) = b(ti ~ ti1) # 0 J

@ [f the bias b is known, there are various ways to
compensate for it, such as the ones presented by Dee
(2005) and Trémolet (2005).
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A CFL like condition on filter stability

Stability and Trajectory Shadowing

Kalman filters on combined state and observation
space

@ Let us denote the time interval between observations by
At.

@ To second order accuracy in At, we can derive a two term
form for model evolution, when looking at it over short
observation intervals At.

@ This form separates the smoothly evolving model bias from
stochastic Gaussian model noise.
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Stability and Trajectory Shadowing

Kalman filters on combined state and observation
space

XO(ti + At) = M(t;, ti_1)(X(t)) + bAt + n(ti_1) + O(AF)

@ where x? is the true future state and »(t;) is Gaussian
model noise with zero mean.
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Stability and Trajectory Shadowing

Kalman filters on combined state and observation
space

@ In this error decomposition, the smooth model bias term
bAt represents drift, see e.g. Orrell (2005), Orrell et al.
(2001).

@ Itindicates a tendency of unknown direction.

@ But the maximum speed ||b|| of the expected state of an
imperfect model to drift away from the true evolution of the
state of the system can be estimated from statistics of
forecast systematic errors.
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Stability and Trajectory Shadowing

Kalman filters on combined state and observation
space

@ Let us recall the innovation form of the Kalman filter that
we have used.
P(t;) = M;_1P3(ti_ )M, + Q;
K; = P'(t)H (HP'(t;)H] + R;)~". (1)
x3(t) = x" (1) + Ki(y? — Hi(x'(t))).
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Stability and Trajectory Shadowing Regularization implicit in Kalman filtering

A CFL like condition on filter stability

@ From the last equation, we see that the state increment
ox(t;) satisfies

ox(t) = xa(t;) — x'(t) @

@ and is therefore computed from the innovation vector d;

d; = y? — Hi(x'()) 3|

@ by solving a linear equation with the inverse of the Kalman
gain matrix K;:

K715X(ti) =d; (4)J
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Stability and Trajectory Shadowing

Kalman filters on combined state and observation
space

@ Replacing the Kalman gain here with its definition in the
second equation in the Kalman group above, we see that
the two last equations are equivalent to the following
system of two equations:

(HP(t)H] + R))oz; = d;
ox(t) = P! (t)HT6z;

@ where 6z, is the information vector.
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Stability and Trajectory Shadowing

Kalman filters on combined state and observation
space

@ Inserting the first and third equations from our Kalman
group of equations into the first equation above, we get a
linear operator equation, local in time, whose operator we
shall denote by A;.

@ This operator can aptly be called the symmetric Kalman
filter operator and it defines the information form of the
Kalman filter.

A,'(SZ,' =

(6)
(HiM;_1P3(ti1)M{H] + H,QH] + R)dz; = d;
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Stability and Trajectory Shadowing

Kalman filters on combined state and observation
space

@ The operator A; above that defines the Kalman filter is
applied to measurements sampled from a stochastic
process, but it is itself a deterministic linear operator.

@ A, defines the metric in the quadratic form, in which the
Kalman filter produces a least squares estimate that can
also be interpreted as the maximum a posteriori estimate
according to the Bayes theorem.
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Stability and Trajectory Shadowing

Kalman filters on combined state and observation
space

@ The equation (6) is an equation defined on the space of
observations.

@ lts various component operators are defined on different
spaces as well:

@ P4(t;_q) is defined on the state space at time t;_1,
@ Q; is defined on the state space at time t; and
@ R; is defined on the observation space at time t;.

Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen,  Stability of Ensemble Kalman Filters



Regularization implicit in Kalman filtering

Stability and Trajectory Shadowing A CFL like condition on filter stability

Stabilizing Kalman filters

@ Because the symmetric Kalman filter operator (6) is
defined on the observation space at time t;, it imposes its
implicit optimality condition as a final time observation
space control.

@ For small enough analysis increments §x(t;), nonlinear
Kalman filtering for smoothly evolving dynamical systems
will be locally stable, if one of the following conditions is
fulfilled:
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Stability and Trajectory Shadowing A CFL like condition on filter stability

Stabilizing Kalman filters

@ An explicit or implicit static prior or background term with a
positive weight is used, or

© The state space is completely observable and the
observation operator is a projection operator. These
conditions imply that the spectrum of the error covariance
operator P4(t;) is both bounded and positively bounded
from below, or
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Stability and Trajectory Shadowing A CFL like condition on filter stability

Stabilizing Kalman filters

@ The model is not perfect on any observable subspace of
the model state space, which implies that the spectrum of
the error covariance operator Q; is positively bounded from
below, or

© All observations are noisy and there are no rigid
constraints between errors in different observations, which
implies that the spectrum of the error covariance operator
R; is positively bounded from below
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Stability and Trajectory Shadowing A CFL like condition on filter stability

Stabilizing Kalman filters

@ The list above is formulated in terms of a small enough
analysis increment 6x(t;), rather than a small time between
observations At.

@ It can be seen that the latter is a special case of the former.
The condition of smallness of analysis increments covers
small perturbations in any direction in the state space, and
not just the ones parameterized by the time variable.
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Stabilizing Kalman filters

@ In both cases, the validity of the above statements
depends on the smoothness assumption of the model
evolution on the state space, so that the model evolution
operator converges to identity as the magnitude of a
perturbation decreases to zero.
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A CFL like condition on filter stability

Stability and Trajectory Shadowing

Stabilizing Kalman filters

Theorem

Stability property of VKF under Gaussian model noise. The
Variational Kalman Filter algorithm for smoothly evolving
dynamical systems is stable under Gaussian model noise, if
any of the conditions in the list above is fulfilled, and the
iterations employed in the VKF algorithm are carried out until
convergence to a limit set by the lower bound e on the spectrum
of the symmetric Kalman Filter operator A;. This will take a
finite number of steps independent of model resolution.

Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen,  Stability of Ensemble Kalman Filters



Regularization implicit in Kalman filtering

Stability and Trajectory Shadowing  » op) ke condition on filter stability

A CFL like condition for stability

@ Let us now look at the impact of model bias on the stability
analysis above. We have denoted a local model bias
vector in unit time by b.

@ |t will thus represent the direction and speed of model drift
bALt.

@ We shall assume that the dynamics of both the true
operator M and the biased discrete model M are smooth.
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Stability and Trajectory Shadowing  » op) ke condition on filter stability

A CFL like condition for stability

@ This assumption implies that the accumulation of bias in
the model state will be proportional to the duration of
model evolution to second order accuracy, in the form

X(t+ At) — xO(t + At) =
M(t + At 1)(x(t)) — M(t+ At, t)(x(t)) =
bAt + »(t) + O(A)

(7)
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Stability and Trajectory Shadowing  » op) ke condition on filter stability

A CFL like condition for stability

@ where x°(t) denotes the model state evolved with the
unbiased true model M and

@ where we have continued to assume that model noise #(t)
is Gaussian and Markov.

@ Because of the smoothness of model evolution, for small
enough At, the drift bAt will stay beneath ¢, no matter
what is the direction of the bias b.
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A CFL like condition for stability

@ But as we have seen, any innovation direction that is
modified by the local Kalman operator with a factor less
than e away from the identity will be suppressed by the
static prior plus the noise term in the Variational Kalman

Filter.
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A CFL like condition on filter stability

Stability and Trajectory Shadowing

A CFL like condition for stability

@ We can state this result as a conditional stability property
of the Variational Kalman Filter against model bias

Theorem

Conditional stability under bias of VKF. The Variational
Kalman Filter is stable for smoothly evolving dynamical
systems, if there is a sufficient temporal and spatial density of
observations available, with an observation bias uncorrelated
with the model bias, and such that the span of the temporally
local model bias is observed.
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Stability and Trajectory Shadowing  » op) ke condition on filter stability

A CFL like condition for stability

@ The conditional stability property above can be seen as a
kind of Courant-Friedrichs-Lewy (CFL) stability condition,
only in state space and not in the computational domain,
for Kalman filtering algorithms.

@ It means that if the model bias drives model evolution away
from the true trajectory, the bias will not accumulate
beyond a given threshold, if the corresponding drift can be
countered fast enough with an observation with an error
that is uncorrelated with model bias, before the drift has
increased beyond the assumed model noise level.
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Stability and Trajectory Shadowing  » op) ke condition on filter stability

A CFL like condition for stability

@ If the drift has grown too large, VKF (and EKF) may choose
to believe the biased forecast, rather than the contradicting
observation.

@ In the terminology or Orrell et al. (2001), the stability under
bias property above gives a sufficient condition for the
Kalman Filter to guarantee that the sequence of analyses
produced by VKF will continue to shadow the truth with a
bound that corresponds to the level of model error
covariance ||P4(t;)||, or ||Bo + P/(t) + Qj|| in VKF notation.
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Stability and Trajectory Shadowing  » op) ke condition on filter stability

A CFL like condition for stability

@ Shadowing cannot similarly be guaranteed for the strong
constraint 4D-Var without a background term, because the
absence of a model error term and the strictness of the
model constraint prevent the strong constraint 4D-Var
operator from being a Fredholm operator.

@ There will always be directions in the state space that are
not observable.
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Stability and Trajectory Shadowing  » op) ke condition on filter stability

A CFL like condition for stability

@ The background term does stabilize the filter, but if the
background has been produced by the same biased model,
the ensuing analysis will be bias-blind, in the terminology
of Dee (2005), and continue to suffer from the same bias.

@ This was also empirically observed by Orrell (2005).
Strong-constraint 4D-Var is therefore not stable against
model bias.
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Stability and Trajectory Shadowing

A CFL like condition for stability

@ The CFL condition for a numerical model of the advection
equation reads

At < Ax/|v|] (8)

@ where Ax is the shortest spatial grid length and ||v|| is the
fastest advection velocity in the system.
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Stability and Trajectory Shadowing Regularization implicit in Kalman filtering

A CFL like condition on filter stability

A CFL like condition for stability

@ The corresponding expression for the shadowing condition
above reads

At < ¢/||b]| 9)

@ where ¢ is the amplitude of Gaussian noise used in the
Kalman filter and ||b|| the speed of growth of forecast bias

@ Verbally, the above formula says that we must have
correcting observations in the direction of the bias b before

the corresponding drift has become larger than the noise
level of model error.
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Stability and Trajectory Shadowing  » op) ke condition on filter stability

A CFL like condition for stability

@ In practice, the assumptions of the stability under model
bias property may not be fulfilled and models will exhibit
bias, especially in poorly observed areas of their state
space, such as the stratosphere.

@ This can be countered with covariance inflation.
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A CFL like condition on filter stability

Stability and Trajectory Shadowing

A CFL like condition for stability

@ The shadowing condition with covariance inflation
becomes

At < |[Bo + Qjl[/|/b]| (10)

@ or, more generally,

|1Bo + Qil| > [[b]|||ox(t)]| (11)

e for any state increment dx(t;).
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: Laboratory and numerical geometr
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Overview

e Computational Results
@ The Shallow Water Equations - Dam Break Experiment
@ Laboratory and numerical geometry
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The Shallow Water Equations - Dam Break Experiment

: Laboratory and numerical geometr
Computational Results y 9 y

The Shallow Water Model

@ MOD_FreeSurf2D by Martin and Gorelick
@ Finite-volume, semi-implicit, semi-Lagrangian MATLAB
code

@ Used to simulate a physical laboratory model of a Dam
Break experiment along a 400 m river reach in Idaho

@ The model consists of a system of coupled partial
differential equations
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: Laboratory and numerical geometr
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The Shallow Water Model - 1

O W B (28, ) il
—ngcz;;LZ,‘/zU+fV,
T T O 2 AT UL
—gUé;VZV—fU,
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The Shallow Water Equations - Dam Break Experiment

: Laboratory and numerical geometr
Computational Results y 9 y

The Shallow Water Model - 2

@ U is the depth-averaged x-direction velocity
@ V is the depth-averaged y-direction velocity
@ 1 is the free surface elevation

@ g is the gravitational constant

@ ¢ is the horizontal eddy viscosity coefficient
@ ~7 is the wind stress coefficient

°

U, and V, are the reference wind components for top
boundary friction

H is the total water depth
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The Shallow Water Equations - Dam Break Experiment

: Laboratory and numerical geometr
Computational Results y 9 y

The Dam Break laboratory experiment

@ The 400 m long river stretch has been scaled down to 21.2
m

Water depth is 0.20 m above the dam
The dam is placed at the most narrow point of the river
The riverbed downstream from the dam is initially dry

In the experiment the dam is broken instantly and a flood
wave sweeps downstream

@ The total duration of the laboratory experiment is 130
seconds
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The observations

@ The flow is measured with eight wave meters for water
depth, placed irregularly at the approximate flume mid-line
up and downstream from the dam

@ Wave meters report the depth of water at 1 Hz, so with 1 s
time intervals

@ Computational time step is 0.103 s
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Flume geometry and wave meters

21.2m

j0[e4 x5 w6 * i

O Initially wet area * Wave meter * Pressure transducer
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Vertical profile of flume

Side View
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VENKF applied to shallow-water equations

@ Ensemble size 100
@ Observations are interpolated in space and time
@ A new ensemble is therefore generated every time step

Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen,  Stability of Ensemble Kalman Filters



The Shallow Water Equations - Dam Break Experiment

Computational Results Laboratory and numerical geometry

Interpolating kernel
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Observation interpolation in space

Data interpolated by 9x9 Gaussian Kernel at sensor 2
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Observation interpolation in time
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Model vs. hydrographs - 1
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Model vs. hydrographs - 2
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VENKF vs. hydrographs

e VERKF esfimation
O Measured dita

VENKF sstimation
© Measured data

VERKF estimation
O Messured data

T VERKF sstimation
O Msssurd data
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Overview

@ Observation density and ensemble spread

Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen,  Stability of Ensemble Kalman Filters



Observation density and ensemble spread

Evidence of the CFL condition in Hilbert space

@ When observations are interpolated to appear on every
time step, or less frequently

@ The VEnKF algorithm always stays numerically stable, but
@ With long time intervals between observations,
@ Fails to capture waves present in the solution.

@ Moreover, the empirical relationship between observation
interval and filter divergence is linear

Idrissa S. Amour, Zubeda Mussa, Alexander Bibov, Antti Solonen,  Stability of Ensemble Kalman Filters



Observation density and ensemble spread

Ensemble spread vs. observation frequency
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Conclusions

Conclusions - 1

@ Kalman filters stabilize their estimates by a variety of
means

@ The most reliable way is to have abundant and frequent
observations combined with

@ Very short assimilation windows - even just one numerical
time step
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Conclusions

Conclusions - 2

@ Generating a new ensemble every time step is optimal,
because

@ The more frequent the inter-linked updates of the
ensemble and the error covariance estimate, the more
accurate the analysis

@ The local linearity assumption implicit in all Kalman filters
remains more valid
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Conclusions

Thank You

Thank You!
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