High-Performance Weather Forecasting Model Advancement at SSEC using Accelerator Technology Current Status and Future Plan

> Allen Huang, Bormin Huang, Jarno Mielikainen, Melin Huang allenh@ssec.wisc.edu Space Science and Engineering Center (SSEC) University of Wisconsin-Madison

- About SSEC
- Why HPC is relevant to SSEC the Motivation
- SSEC MIC & GPU accelerator R&D
- Ways Forward

16th ECMWF HPC Workshop ECMWF, Reading, UK 30 October, 2014

SSEC works to maintain the spirit of exploration of its founder, Verner E. Suomi (1915-1995)

1959: 1st Meteorological Satellite Experiment

> Earth Radiation Balance Observations on Explorer VII

1966: 1st Earth Imaging from GEO

> Spin-scan Camera on 1st Advanced Technology Satellite

1980: 1st Infrared Sounder from GEO

> VISSR Atmospheric Sounder on GOES-4

'Father of Satellite Meteorology"

Weather Satellite renamed "Suomi NPP"

On 25 January 2012 NASA & NOAA renamed their newest Earth-observing satellite after UW-Madison space pioneer

Blue Marble NPP VIIRS Image, GSFC 3

SSEC Data Center Infrastructure Serving Real-time Users around the clock

- Leveraging SSEC 30 years of meteorological satellite operation, currently real-time receive, process, and distributing 10 GEO and 12 LEO satellites;
- Served as NOAA GEO data archive center for more than 20 years;
- World largest non-profit/nongovernmental wx Satellite Center

UW SSEC Geostationary Antennas

Antenna/ Diameter				datasets	Data rates	
4.5 M Patriot 1	90°W	L-Band 1685 MHz	GOES-14	GOES-Test	2.1 Mb/s	Auto tracking Installed 1999
4.5 M Patriot 2	60° W	L-Band 1685 MHz	GOES-12	GOES-SA	2.1 Mb/s	Auto tracking
4.6 M Andrews	135° W	L-Band 1685 MHz	GOES-15	GOES-West	2.1 Mb/s	
6.3 M heated Patriot	101° W	C-Band 3956 MHz	SES-1 (24 Ku and 24 C)	MTSAT NOAAPORT Gilmore relay	3.5 Mb/s 10.2 Mb/s 2.6 Mb/s	Installed 2010 (~\$55K w/o installation) Patriot now out of business
7.3 M Harris	75 [°] W	L-Band 1685 MHz	GOES-13	GOES-East	2.1 Mb/s	Installed in mid 1970s
7.3 M Harris	101° W	C-Band 3956 MHz	SES-1 (24 Ku and 24 C)	MTSAT NOAAPORT Gilmore relay	3.5 Mb/s 10.2 Mb/s 2.6 Mb/s	Installed in mid 1970s
11 Meter	87° W	C-Band 4-8 GHz	SES-2 (24 Ku and 24 C)	M5G Wallops relay	1.2 Mb/s 2.6 Mb/s	Installed in early 1980s

GeoMetWatch-STORM Brings the Advanced Science & Technology Together

Cutting Edge Sensor

Large Domain High Temporal Observations

Global Coverage

High Vertical Resolving Observations

GIFTS Water Vapor Tracer Winds for Hurricane Bonnie (August 26, 1998) n 9 50 hPa 8.0 ቪ 800 900 1000 40 N 74W 72W 70 W 76 W 78 W 30 N Longitude 80 W 28 N 82 W (g/kg)

Early Monitoring & Warning

06–12–2002, 1200 UTC Lifted Index [°C]

High-Performance Forecasting Technology

UW/CIMSS

CPU

GPU (speedup: 350x)

Current High Vertical Resolution Satellite Sounding Systems Vs. STORM Characteristic Comparison

Current High Vertical Resolution Satellite Sounding Systems Vs. STORM Characteristic Comparison				
Sensor	Observation per day	Field of View Sampling (km)	Temporal Frequency (hour)	ECMWF Forecast Model Error Reduction (%)
COSMIC Taiwan	~1,500 (COSMIC-2: ~10,000)	~200 x 200	>12	~8.5%
AIRS NASA	~2.9 Million	14 x 14	12	<12%
IASI EUMETSAT	~1.3 Million	12 x 12	12	~12%
CrIS NOAA	~29 Million	12 x 12	12	??
STORM-1* GMW	~135 Million per STORM	4 x 4 (2 x 2)	0.25-1.0	~12-15%? (1) ~30-40%? (6)
Note that STORM-1 [*] has much higher observation density, spatial resolution, and much higher measurement frequency than any current high vertical resolution satellite sounding systems. All evidences shown have lead us to believe STORM would enhanced				

forecast model performance by a huge margin when compares with its countparts!

ESRL Global Model Plans	Peta Flop Computing in 2012			
ECMWF 15 th Workshop On HPC in Meteorology October 2, 2012 Alexander E. MacDonald Director Earth System Research Lab Boulder, Colorado Deputy Assistant Administrator NOAA Research	DOE Jaguar System - 2.3 PetaFlops - 250,000 CPUs - 284 cabinets - 7000 KW power - Cost: ~ \$100 million - Building: \$75 million	Equivalent GPU System - 2.3 PetaFlop - 600 Kepler GPUs - 10 cabinets - 200 KW power - Cost: ~ \$5 million		
Slide #36	 - Reliability in hours • Large CPU systems (>100 thousand CPUs) are unreforecasting <u>CPU cost</u> – Power & Cooling: \$8.4 M / year – System Cost: \$100M – Facilities \$75M 			
NOAA Research	 Cost: ~ \$100 million Building: \$75 million Reliability in hours Large CPU systems (>100 thousand CPUs) are unreforecasting <u>CPU cost</u> Power & Cooling: \$8.4 M / year System Cost: \$100M 	- Reliability in weeks ealistic for operational weathe <u>GPU cost</u> \$0.2M / year \$5 M \$0.8M		

GPU-based systems will dominate super-computing within 3 years
75 percent of HPC customers are expected to use GPUs in 2014 (HPC study, 2012)

SSEC High Performance Computing Publications (2009-2014)

82 Journal & Conference Papers

- Journal Papers: 36
 - GPU-based: 26
 - HPC: 10
- Conference Papers: 46
 - GPU-based: 38
 - MIC: 3
 - HPC: 5

CONtinental United States (CONUS) benchmark data set for 12 km resolution domain for October 24, 2001

- The size of the CONUS 12 km domain is 433 x 308 horizontal grid points with 35 vertical levels.
- The test problem is a 12 km resolution 48-hour forecast over the Continental U.S. capturing the development of a strong baroclinic cyclone and a frontal boundary that extends from north to south across the entire U.S.

MIC processing time for the TEMF planetary boundary layer scheme

MIC processing time for the TEMF planetary boundary layer scheme

CPU processing time for the TEMF planetary boundary layer scheme

Thompson microphysics scheme

♦WRF v2.2 incorporated the new Thompson microphysics scheme

Includes water vapor, cloud water, rain, cloud ice, graupel, and snow

1.Water and ice species 2.Microphysical process

CONtinental United States (CONUS) benchmark data set for 12 km resolution domain for October 24, 2001

•The size of the CONUS 12 km domain is 433 x 308 horizontal grid points with 35 vertical levels.

•The test problem is a 12 km resolution 48-hour forecast over the Continental U.S. capturing the development of a strong baroclinic cyclone and a frontal boundary that extends from north to south across the entire U.S. 14

MIC processing time for the Thompson microphysics scheme

MIC processing time for the Thompson microphysics scheme

5-Layer Thermal Diffusion Scheme - 1

- Land Surface Models (LSMs) in WRF
 - -- are used to provide **heat** and **moisture** fluxes over land and sea-ice points see **land surface process** illustration
- **5-layer thermal diffusion scheme** is one of LSMs based on MM5 with an energy budget made up of **sensible**, **latent**, and **radiative heat** fluxes

Illustration of Land Surface process

Reference:

 (1) MM5 (Mesoscale Models)
 (2) J. Dudhia, PSU/NCAR, 4950, 1996

Optimization on 5-Layer Thermal Diffusion Scheme – 5 *-- MIC-based Runtime Summary --*

Optimization on 5-Layer Thermal Diffusion Scheme – 6 *-- CPU-based Runtime Summary --*

Improvement Version

Optimization on 5-Layer Thermal Diffusion Scheme – 4 *-- Runtime & Speedup Summary --*

CPU/MIC-based code runtimes and speedups for various versions, where the **improvement factors are compared to cv1 and v1 respectively**.

Version	Description	Runtime (<i>ms</i>)	Improvement factor
cv1	The first-version <u>multi-threaded</u> code running at <u>one quad-core CPU socket</u> with <u>OpenMP</u> before any improvement	5.4	
v1	The first-version <u>multi-threaded</u> code running at <u>MIC</u> before any improvement	2.3	
cv2 / v2	Multi-threading OpenMP, i-loop fusion running on one-quad core CPU socket and MIC	4.5 / 1.35	
cv3 / v3	+ data process in parallel with <i>CHUNK</i> = 64, and add !dir\$ vector aligned, add !DIR\$ SIMD	3.45 / 1.1	CPU-based: 1.6x MIC-based: 2.1x
			20

Yonsei University Planetary Boundary Layer (YSU PBL) Scheme - 1

- **YSU scheme** is one of PBL in WRF see **PBL process** illustration
- PBL process
 - -- is responsible for **vertical sub-grid-scale fluxes due to eddy transports** in the whole atmospheric column

Illustration of PBL process

- -- determines **flux profiles** within boundary and stable layers
- -- provides **atmospheric tendencies** of temp., moisture, horizontal momentum etc.

Reference:

Hong, Noh, and Dudhia, Monthly Weather Review, **134**, 2318-2341, 2006 **Optimization on YSU PBL – 8** *-- MIC-based Runtime Summary --*

Optimization on YSU PBL – 9 -- CPU-based Runtime Summary --

Improvement Version

Note: our focus is to optimize the code with Intel MIC architecture, and thus sometimes it may have an impact on its performance when running on CPU.

Optimization on YSU PBL – 7 -- *MIC code Runtime & Speedup Summary --*

Improvement factors s are compared to cv1 and v1 respectively

Version	Description	Runtime (<i>ms</i>)	Speedup
cv1	The first-version <u>multi-threaded</u> code running on <u>one quad-core CPU socket with OpenMP</u> before any improvement		
v1	The first-version <u>multi-threaded</u> code running at <u>MIC</u> before any optimization	108.1	
cv2/v2	Multithreading OpenMP + loop fusion	257.7/100.2	
cv3/v3	+ SIMD	248.2/96.2	
cv4/v4	+ vectorization for subroutines " <i>tridi1n</i> " and " <i>tridin_ysu</i> "	253.2/ 86.5	
cv5/v5	+ data process in parallel with <i>CHUNK</i> = 64, and add !dir\$ vector aligned, add !DIR\$ SIMD	239.5/ 52.6	
cv6/ <mark>v6</mark>	+ data process in parallel with <i>CHUNK</i> = 112	165.5/ 46.0	(1.6x) (2.4x)

Processing times – CPU Vs. GPU Early Result (2009)

	Time [ms]
The original Fortran code on CPU	16928
CUDA C with I/O on GPU	83.6
CUDA C without I/O on GPU	48.3

Our experiments on the Intel i7 970 CPU running at 3.20 GHz and a single GPU out of two GPUs on NVIDIA GTX 590

The Fast Radiative Transfer Model

Without losing the generality of our GPU implementation, we consider the following radiative transfer model:

$$R_{v} = \varepsilon_{v} B_{v}(T_{s}) \tau_{v}(p_{s}) - \int_{0}^{p_{s}} B_{v} [T(p)] \frac{d\tau_{v}(p)}{dp} dp$$

with the regression-based transmittances:

$$\begin{split} \tau_{\nu}(p_{j}) &= \tau_{\nu}^{\mathrm{Dry}}(p_{j}) \tau_{\nu}^{\mathrm{H}_{2}\mathrm{O}}(p_{j}) \tau_{\nu}^{\mathrm{O}_{3}}(p_{j}) \tau_{\nu}^{\mathrm{CH}_{4}}(p_{j}) \tau_{\nu}^{\mathrm{CO}}(p_{j}) \\ &= \exp\left\{\sum_{k=1}^{j} \left[\sum_{l_{d}=1}^{m_{f}} C_{\nu l_{d}k}^{\mathrm{Dry}} X_{l_{d}k}^{\mathrm{Dry}} + \sum_{l_{w}=1}^{m_{w}} C_{\nu l_{w}k}^{\mathrm{H}_{2}\mathrm{O}} + \sum_{l_{o}=1}^{m_{o}} C_{\nu l_{o}k}^{\mathrm{O}_{3}} X_{l_{o}k}^{\mathrm{O}_{3}} + \sum_{l_{m}=1}^{m_{m}} C_{\nu l_{m}k}^{\mathrm{CH}_{4}} X_{l_{m}k}^{\mathrm{CH}_{4}} + \sum_{l_{c}=1}^{m_{c}} C_{\nu l_{c}k}^{\mathrm{CO}} X_{l_{c}k}^{\mathrm{CO}}\right]\right\}$$

Our GPU forward model is running on a low-cost personal super computer (~US\$7000).

It has a quad-core 2.4 GHz AMD CPU, and 4 Nvidia Tesla 1.3 GHz GPUs with total 960 cores.

ServMax PSC-2 960-Core Personal Supercomputer

- 250 times faster than Standard
 PCs and Workstations
- 4 Teraflops of Compute Capability
- Delivering Cluster Level Computing Performance at Your Desk.

Form Factor	10.5" × 4.376", Dual Slot
# of Tesla GPUs	1
# of Streaming Processor Cores	240
Frequency of processor cores	1.3 GHz
Single Precision floating point performance (peak)	933
Double Precision floating point performance (peak)	78
Floating Point Precision	IEEE 754 single & double
Total Dedicated Memory	4 GB GDDR3
Memory Speed	800MHz
Memory Interface	512-bit
Memory Bandwidth	102 GB/sec
Max Power Consumption	187.8 W
System Interface	PCIe x16
Auxiliary Power Connectors	6-pin & 8-pin
Thermal Solution	Active fan sink
Software Development Tools	<u>C-based CUDA Tõõlkit</u>

RTTOV-7 GPU Work Update (7/20/2010)

Tasks finished (single GPU version):

- 1. The single-input single-GPU RTTOV-7 IASI code (for computing one 8461channel IASI radiance spectrum on 1 GPU), with 180x speedup.
- The multi-input single-GPU RTTOV-7 IASI code (for computing five 8461channel IASI radiance spectra on 1 GPU), with 368x speedup.

Execution Time in milliseconds (ms)	RTTOV-7 (single-input GPU)	RTTOV-7 (multi-input GPU)
1 CPU core	195 ms	195 ms
1 GPU (240 cores)	1.083 ms	0.53 ms
GPU Speedup	180x	368x

Note:

- Benchmark performed in a low-cost (~US\$7000) personal computer with
 - 1 quad-core 2.4 GHz AMD CPU and four 1.3 GHz 240-core NVIDIA Tesla GPUs.
- ➢ GPU speedup was with respect to 1 CPU core performance. The CPU code was compiled using gfortran with −O2 compiler switch.
- To compute one day's amount of 1,296,000 IASI spectra, the CPU code will take 2.925 days, whereas the single-input & multi-input GPU codes will take 23.39 & 11.44 minutes, respectively.

GPU-based Multi-input RTM

 \triangleright A forward model to concurrently compute 40 radiance spectra was further developed to take advantage of GPU' s massive parallelism capability.

To compute one day's amount of 1,296,000 IASI spectra, the original RTM (with –O2 optimization) will take ~ 10 days on a 3.0 GHz CPU core; the single-input GPU-RTM will take ~ 10 minutes (with 1455x speedup), whereas the multi-input GPU-RTM will take ~ 5 minutes (with 3024x speedup).

* Code Restructuring to Improve Performance in WRF Model Physics on Intel Xeon Phi. J. Michalakes. Workshop on Programming Weather, Climate and Earth System Models on Heterogeneous Multi-core Platforms, Boulder, Colorado, Sept. 19-20, 2013. (http://data1.gfdl.noaa.gov/multi-core/presentations/michalakes_5.pdf)

Code Validation

-Fused multiply-addition was turned off (--fmad=false)

-GNU C math library was used on GPU, i.e. powf(), expf(), sqrt() and logf() are replaced by library routines from GNU C library -> bit-exact output

-Small output differences for –fast-math

Potential temperature

Difference between CPU and GPU outpdts

RRTMG_SW computing time on a CPU

Compute cloud properties

Compute optical depth

Compute fluxes and heating rate

RRTMG_SW processing time for a six GPU optimizations steps

RRTMG_SW processing time for a six GPU optimizations steps

Fast math and GPU boost features

Execution time of RRTMG SW including data transfer

Comparing RRTMG_SW GPU implementations

AER: 18,819 profile calculations with **72** layers 0.84 s on **K20**

-> 22,404 profiles / second.

SSEC: 130,900 profile calculations with **35** layers 0.50s on **K40** -> 261,800 profiles / second.

- K40 is ~2x faster than K20
- The number of layers has a non-linear impact on processing speed, which makes comparison of profiles/s metrics diffucult

Implementation of YSU PBL in GPUs with CUDA Program - 2

To test whether the coding of YSU PBL in CUDA is correct, CONtinential United States (CONUS) benchmark data set is used –
433 x 308 horizontal grid points with 35 vertical levels

Mapping of the CONUS domain onto one GPU thread-block-grid domain 42

Improvement of YSU PBL in GPU-Based Parallelism - 1

GPU runtime and speedup as compared to one-single-threaded CPU code for the **first CUDA version** YSU PBL module

	CPU runtime	GPU runtime	Speedup
One CPU core	1800.0 ms		
Non-coalesced		50.0 ms	36.0x
Coalesced		48.0 ms	37.5x

Improvement of YSU PBL in GPU-Based Parallelism – 2.1 with More L1 Cache than Shared Memory

Three configurations of memory between **shared memory** and **L1 cache** are :

- (1) **48** KB **shared memory**, **16** KB **L1 cache default**
- (2) 32 KB shared memory, 32 KB L1 cache
- (3) 16 KB shared memory, 48 KB L1 cache
 - → can be achieved by applying "cudaFuncCachePreferL1"
- → After increasing L1 cache with "cudaFuncCachePreferL1", the GPU runtime reduces and speedup increases

Improvement of YSU PBL in GPU-Based Parallelism – 2.2 with More L1 Cache than Shared Memory

	CPU runtime	GPU runtime	Speedup
One CPU core	1800.0 ms		
Non-coalesced		48.0 ms	37.5x
Coalesced		45.0 ms	40.0x

Improvement of YSU PBL in GPU-Based Parallelism – 3.2 with Scalarizing Temporary Arrays

By Scalarization, the temporary arrays are reduced from

68 down to 14 arrays -

→This makes global memory access reduced a lot !!!

	CPU runtime	GPU runtime	<u>Speedup</u>
One CPU core	1800.0 ms		
Non-coalesced		39.0 ms	46.2x
Coalesced		35.0 ms	51.4x

Improvement of YSU PBL in GPU-Based Parallelism – 4.1 with Releasing Vertical-Level Dependence

- The **leftover 14 local array variables** are tricky because the vertical-level (*k*) components are not independent with one another.
- The complication can be seen from the differential equations for those prognostic variables $(C, u, v, \theta, q_v, q_c, q_i)$
 - \rightarrow Firstly, we have to release the first z dependence –

the *k-th* component depends on the *(k-1)-th* input

→ Secondly, release the second z dependence –

the *k-th* component needs inputs from (*k*+1)-*th* component

$$\frac{\partial C}{\partial t} = \left(\frac{\partial}{\partial z} \left[k_c \left(\frac{\partial C}{\partial z} - \gamma_c \right) - \left(\overline{w'c'} \right)_h \left(\frac{z}{h} \right)^3 \right] \right)$$

First z-dependent component

Improvement of YSU PBL in GPU-Based Parallelism – 4.3 with Releasing Vertical-Level Dependence

- About 1/3 of the Fortran codes appears to be such a dependence among the *(k-1)-th*, *k-th*, and *(k+1)-th* components
- This reduces the global memory access even much more !!!

	CPU runtime	GPU runtime	Speedup
One CPU core	1800.0 ms		
Non-coalesced		21.53 ms	83.4x
Coalesced		16.45 ms	109.4x

Note: So far, **63 registers/thread** and **64 threads/block** are used, and **No I/O** is involved

GPU Runtime & Speedups with Multi-GPU Implementations for YSU PBL Module

CUDA-based GPU accelerated WRF modules

Blockdim(64, 1, 1);

	WRF Module name	Speedup vs. one thread on 1.8Ghz Sandy Bridge (gfortran v.4.6.2)
	Single moment 6-class microphysics	500x
	Eta microphysics	272x
	Purdue Lin microphysics	692x
	Stony-Brook University 5-class microphysics	896x
	Betts-Miller-Janjic convection	105x
/	Kessler microphysics	816x
	New Goddard shortwave radiance	134x
	Single moment 3-class microphysics	331x
٦	New Thompson microphysics	153x
	Double moment 6-class microphysics	206x
	Dudhia shortwave radiance	409x
	Goddard microphysics	1311x
	Double moment 5-class microphysics	206x
	Total Energy Mass Flux surface layer	214x
	Mellor-Yamada Nakanishi Niino surface layer	113x
	Single moment 5-class microphysics	350x
	Pleim-Xiu surface layer	665x ⁵⁰

Radiation	RRTMG LW	123x / 127x	JSTARS, 7, 3660-3667, 2014
	RRTMG SW	202x / 207x	Submitted to J. Atmos. Ocean. Tech.
Rae	Goddard SW	92x / 134x	JSTARS, 5, 555-562, 2012
	Dudhia SW	19x / 409x	
e	MYNN SL	6x / 113x	
Surface	TEMF SL	5x / 214x	
\mathbf{N}	Thermal Diffusion LS	10x / 311x [2.1 x]	(GPU) Submitted to JSATRS
PBL	YSU PBL	34x / 193x [2.4x]	(GPU) Submitted to GMD
Р	TEMF PBL	[14.8x]	(MIC) SPIE:doi:10.1117/12.2055040
CU P	Betts-Miller-Janjic (BMJ) convetion	55x / 105x	

GPU speedup: speedup with IO / speedup without IO

MIC improvement factor in []: w.r.t. 1st version multi-threading code before any improvement

Kessler MP	70x / 816x	J. Comp. & GeoSci., 52, 292-299, 2012
Purdue-Lin MP	156x / 692x [4.2x]	(GPU) SPIE: doi:10.1117/12.901825
WSM 3-class MP	150x / 331x	
WSM 5-class MP	202x / 350x	JSTARS, 5, 1256-1265, 2012
Eta MP	37x / 272x	SPIE: doi:10.1117/12.976908
WSM 6-class MP	165x / 216x	Submitted to J. Comp. & GeoSci.
Goddard GCE MP	348x / 361x [4.7x]	(GPU) Accepted for publication in JSTARS
Thompson MP	76x / 153x [2.3x]	(MIC) SPIE: doi:10.1117/12.2055038
SBU 5-class MP	213x / 896x	JSTARS, 5, 625-633, 2012
WDM 5-class MP	147x / 206x	
WDM 6-class MP	150x / 206x	J. Atmo. Ocean. Tech., 30, 2896, 2013

GPU Roadmap

CUDA-GPU WRF Project Milestone (October, 2014)

Accelerator-based (GPU/MIC) WRF model development at SSEC/CIMSS UW-Madison

- Intel awarded SSEC a two-year grant to develop Intel MIC Xeon Phi Coprocessor based WRF using OpenMP/OpenACC common architecture
 - UW-Madison becomes one of the Intel Parallel Computing Center (IPCC)
 - MIC WRF Open Source with minimum changes to existing cores
- NVIDIA, the world largest GPU chip maker, has selected SSEC as one of their CUDA Research Center (CRC) and will fund SSEC to develop a GPU-CPU Hybrid WRF prototype using CUDA architecture
- Tempo Quest CUDA GPU-WRF project (proposal pending)
 - World fastest GPU-WRF with CUDA based unique architecture
 - Need time consuming code porting & optimization

SSEC Accelerator Technology Team, Collaborators & Sponsors

SSEC, UW-Madison:

- Bormin Huang, PhD
- Jarno Mielikainen, PhD
- Melin Huang, PhD
- Allen Huang, PhD
- Visiting Scholars from around the world

NOAA:

- Mitchell Goldberg and Ajay Mehta
- NASA: Tsengdar Lee
- NVIDIA: Stan Posey
- INTEL: Michael Greenfield
- Tempo Quest, Inc: Ed & Gene (proposal pending)

Thank you for your Attention!