\““‘"“/ Earth System Research Laboratory

Global Systems Division

Porting and Tuning WRF Physics
Packages on Intel Xeon and Xeon
Phi and NVIDIA GPU

Tom Henderson
Thomas.B.Henderson@noaa.gov
Mark Govett, James Rosinski,
Jacques Middlecoff
NOAA Global Systems Division

Indraneil Gokhale, Ashish Jha,
Ruchira Sasanka
Intel Corp.

mailto:Thomas.B.Henderson@noaa.gov

WRF Physics Packages

WSM6

Microphysics parameterization used in
WRF, NIM (NOAA), MPAS (NCAR), etc.

Water vapor, cloud water, cloud ice, rain,
snow, graupel

RRTMG-LW

Longwave radiation package used in too
many NWP models to list here

Double-precision in NIM & MPAS, single-
precision in WRF

All results In this talk are double-precision

9/18/14

9/18/14

Approach

Re-use WSMS5 tuning for Xeon Phi already
done by John Michalakes where possible

Re-use RRTMG-LW experience from John
Michalakes

Diverge from John’s approach in use of
optional compile-time constants for vertical
dimension

Use Non-Hydrostatic Icosahedral Model
(NIM) as dynamical core to test
performance improvements

Source Code Reqguirements

Must maintain single source code for all
desired execution modes

Single and multiple CPU/GPU/Xeon Phi

Prefer Fortran + directives

Use F2C-ACC (Govett) and commercial OpenACC
compilers for GPU

Use OpenMP plus Intel directives for Xeon CPU
and Xeon Phi

Use SMS (NOAA) for distributed (MPI) parallelism

Avoid architecture-specific code
transformations

Unless automated

9/18/14

Port Validation

Good cross-architecture bitwise-exact
solutions for NIM dynamics validation

Xeon Phi: use slow-but-exact Intel math
library to match Xeon & Xeon Phi

NVIDIA GPU: Optionally push rare math
library calls back to CPU for testing

Rudimentary validation for WSM6 and
RRTMG-LW thus far

9/18/14

What Makes “Good” Code for
Xeon and Xeon Phi?

OpenMP threading

Minimize threading overhead
Vectorizable
Fixed inner dimension

Compile-time constants

Build-time-adjustable length of inner
dimension

Optimal = vector width

Alighed memory
Begin arrays on vector boundaries

9/18/14

What Makes “Good” Code for
Xeon and Xeon Phi?

Intel compiler warns of inefficient behavior
Loops that cannot be vectorized
“Partial”, “peel”, and “remainder” loops
Unaligned access
“Gathers™ and “scatters”

Reasons for inefficiency in some cases

9/18/14

Code Modifications: Threading

Add single OpenMP loop to NIM for all
“physics”
Minimizes OpenMP overhead

Split arrays into “chunks™ with fixed inner
dimension

Allow large chunk sizes for GPU, small for
Xeon & Xeon Phi

Modify loops that transfer arrays between
dynamics and physics to handle “chunks”

Very little impact on existing code
Use Intel Inspector to find race conditions
It really works

9/18/14

Code Modifications: Threading

NIM (and MPAS) dynamics: (k,iCell)
“k” = vertical index within a single column

“Icol” = single horizontal index over all
columns

WRF Physics: (i,k,))
‘I’ = horizontal index over columns in a
single “chunk”
“k” = vertical index within a single column

14

|” = index over “chunks”
Use OpenMP to thread " loop

9/18/14

Example: Chunk Width = 4

Dynamics

(k,icol)
kT___}

ICell

Replicate last column*

“NPROMA”

Physics
(i,k.))

kI___>
7L j=2 j=3 j=4

aisna * Replication avoids adding “if” blocks to all physics “i” loops w0

Code Modifications:
Vectorization

Add compiler flag for alignment

Split/fuse loops per Intel compiler

complaints

Add Intel compiler directives
Alignment

Compiler cannot always tell if memory is
aligned

Vectorization

Compiler cannot always tell if a loop can be
safely vectorized

Intel added two of these missed by me

9/18/14 11

9/18/14

Compile-Time Constants

Performance improves if compile-time
constants are used for memory and loop
bounds with Intel compiler

Also benefits GPU since sizes of arrays Iin
GPU “shared memory” must be known at
compile time

Stride-1 loops work best
Use Fortran parameters or literal constants

But, hard-coding compile-time constants Is
too constraining for research codes...

12

Compile-Time Constants

Add build-time option to use compile-time
constants

Select “I” chunk size at build time (John M.)
Select “k” vertical size at build time (new)

real :: y(ims:ime, kms:kme) real :: y(1:8,1:32)

real :: x(kms:kme) real :: x(1:32)
do k=kts,kte do k=1,32
do i=its,ite do i=1,8

Optional + automatic = very flexible
Many good ways to do this...

ssna 0 Constant “k” allows simplification of WSM5 13
code

9/18/14

NIM Test Cases

Single-node test
225km global resolution (10242 columns)
Time-step = 900 seconds
/2 time steps

WSM6 and RRTMG-LW called every time
step

Mimic expected number of columns per

NOC
32-

32-

e for target resolution (~3km)
evel iIdealized case
evel and 41-level real data cases

14

Devices and Compilers

SNB 2 sockets (on loan from Intel)
E5-2670, 2.6GHz, 16 cores/node
ifort 14

IVB-EP 2 sockets (Intel endeavor)
E5-2697v2, 2.7GHz, 24 cores/node
Ifort 15 beta

HSW-EP 2 sockets (Intel endeavor)
E5-2697v3, 2.6 GHz, 28 cores/node
Ifort 15 beta

KNC 1 socket (on loan from Intel)
7120A, 1.238GHz
ifort 14

NVIDIA K20X GPU (Titan, ORNL)
Mark Govett, F2C-ACC, work in-progress

9/18/14

15

WSM6 Run Times

Device Threads Chunk Width Time Time with Intel

(DP words) Optimizations

SNB 32 4 7.5 6.7

KNC 240 8 8.7 5.6

IVB-EP 48 4 3.4 3.1
HSW-EP 56 4 2.6
K20X GPU -- -- 5.3

Intel optimizations reduce precision and make
assumptions about padding, streaming stores, etc.

\I/Dveéle:nsible because WSM6 uses single precision in

KNC: ~12% further speedup using ifort 15 (not beta)
GPU preliminary result courtesy of Mark Govett

9/18/14

WSMG6: Benefit of Compile-Time
Constants for Xeon & Xeon Phi

Device Threads Baseline Time With Time With Constant

Time Constant “k” “” and “k”
KNC 240 12.5 11.6 8.7

VB 48 4.4 4.1 3.4

1.4x speedup on KNC
1.3x speedup on IVB

9/18/14 17

WSMG6: Effect of Vector Length
on Xeon & Xeon Phi

Device 2 DP Words 4 DP 8 DP Words 16 DP Words 32 DP Words

Words
KNC -- -- 8.68 8.82 10.10

VB 3.76 3.38 3.51 3.68 3.71

9/18/14 18

RRTMG-LW: Benefit of Complle-
Time Constants (Preliminary)

Device Threads Baseline Time With

Time Constant “k”
KNC 240 19.1 13.5
VB 48 4.5 3.2

Ifort 15 (not beta)

~1.4x speedup on KNC

~1.4x speedup on VB

Directives not yet added, more tuning TBD

9/18/14 19

Compile-Time Constants: All

9/18/14

Stars Must Align

Compiler flags

Use compile-time constants for loop *and*
memory bounds

Use ifort 14 or 15

Use SNB, IVB, or HSW (*not* Westmere)
Use AVX for maximum effect

May need directives

IDIRSASSUME_ALIGNED
IDIRSVECTOR ALIGNED

Pay attention to compiler output

20

9/18/14

Summary

KNC competitive with SNB despite slower
clock (WSM6)

K20X GPU competitive with KNC

KNL (and GPU) will need to catch up with
VB/HSW

Oﬁtimizations sped up both Xeon and Xeon
Phi

Optional compile-time constants beneficial for
Intel compiler and for GPU shared memory

Simplified WSM5 and WSM6 code via
optional compile-time vertical loop and
memory bounds

21

Near-Future Directions

Finish RRTMG-LW

Understand use of optional compile-time
constants in more detall

Possible future Intel compiler directives or
PGO to address this optimization?

Test with other compilers (PGI, Cray)

Considering solution for inclusion in NIM,
WRF, MPAS, etc. (with Michalakes)

We've been here before, do better this time

Target other WRF physics packages used by
NOAA models

GFS physics

9/18/14

22

Thanks to...

Intel: Mike Greenfield, Ruchira Sasanka,
Ashish Jha, Indraneil Gokhale, Richard Mills

Provision of “loaner” system and access to
endeavor

Consultations regarding code optimization
Work-arounds for compiler issues
Aggressive optimization

John Michalakes
Consultation regarding WSM5 work
Code re-use

9/18/14

23

Thank You

Compiler Options

Xeon baseline optimization flags
-O3 —ftz -gopt-report-phase=Iloop,vec -qopt-
report=4 -align arrayo4byte -xAVX

Xeon aggressive optimization flags
-fp-model fast=1 -no-prec-div -no-prec-sqrt -
fimf-precision=low -fimf-domain-exclusion=15 -
opt-assume-safe-padding

Xeon Phi baseline optimization flags
-O3 —ftz -vec-report6 -align array64byte

Xeon Phi aggressive optimization flags
-fp-model fast=1 -no-prec-div -no-prec-sqrt -
fimf-precision=low -fimf-domain-exclusion=15 -
0 t-assume-safe-Paddlng -opt-streaming-
stores always -opt-streaming-cache-evict=0

9/18/14

25

Effect of Thread Count

Device Max. Threads 25% 50% 75% 100%
KNC 240 14.9 10.5 8.7
VB 48 -- 4.4 3.8 3.4

9/18/14

26

