Directive-Based Parallelization
of the NIM

Mark Govett
Tom Henderson, Jacques Middlecoff,
Jim Rosinski, Paul Madden

NOAA Earth System Research Laboratory

Outline

Brief overview of NIM model

GPU parallelization of NIM using F2C-ACC
— Performance comparison to OpenACC Compilers

Performance and Scaling
— CPU, GPU, MIC

Two talks to follow on MIC parallelization
e Tom Henderson
— report on MIC parallelization of WRF physics routines
* Jim Rosinski

— Parallelization and performance of NIM and FIM

Non-Hydrostatic Icosahedral (NIM)

Global non-hydrostatic dynamical core
— Designed to run at 3.5KM resolution or finer scales

Uniform, global, hexagonal-based icosahedralgrid
— Single horizontal dimension, indexed via looKup table

Co-designed in 2008 for GPU (and MIC)

— Scientists, parallel programmers, computer scientists

Single source code for CPU, GPU, MIC

— Directives used for parallelization
* OpenMP, OpenACC, F2C-ACC, SMS

Good Performance & Scalability

— Tested on up to 10000 GPUs, 1000 MIC Srray Structure

dynamics: a [k, i]

Runs with GFS & WRF physics physics: a [i, k I

— ldealized, real-data tests in progress

NIM/FIM Icosahedral Grid

(MacDonald, Henderson, Middlecoff)

Use a single horizontal index
Etore n,l,meer of sides (5 or 6) in
nprox array
— nprox(34)=6
Store neighbor indices in “prox”
array
— prox(1,34) =515
— prox(2,19) =3
Array Organization

— Vertical dimension innermost

« Mitigates cost of grid cell lookup
table

— Indirect address costs ~1%
Very compact code

Grid Decomposition

NIM G4 (446 km) 10 MPI: Number of sends for each ¢

Decomposition Strategy
— Multiple of 10 MPI tasks is best

* Maps directly to rhombuses
— Eg. 60 MPI tasks means 10 per
rhombus
Grid layout within a MPI task
— Neighbor points together
— Square shape to minimize halo

Graphic shows decomposition
for 10 MPI tasks
— Interior points in dark blue

— Other colors are shared halo
points

Image courtesy of Jim Rosinski

F2C-ACC Compiler

Converts Fortran into CUDA

Developed in 2008 before commercial compilers were
available

Limited Capabilities, Scope, Support
— Mostly line for line code conversion with limited analysis
Used for NIM, FIM and some WRF physics

Performance optimizations added to directives as options
— Define loop parallelism, GPU shared & local memory

Used to evaluate OpenACC compilers (CAPS, PGl, Cray)
— Capability: Can they support FIM, NIM, WRF?
— Performance: Are they within ~10-20% of F2C-ACC?

Dynamics Code + F2C-ACC Directives

* Directives appear as Fortran comments

— ACCSREGION defines an accelerator region
— ACCSDO identifies parallelism
— ACCSTHREAD restricts parallelism to a single thread

IACCSREGION(<96>,<10242>) BEGIN
IACCSDO PARALLEL(1)

do ipn=ips,ipe ! Loop over horizontal
IACC$DO VECTOR(1)
do k=1,nz-1 ! Loop over vertical levels
bedgvar(k,ipn,1l) = cadk(k)* u(k,ipn)+cadp(k)* u(k+1l,ipn)
bedgvar(k,ipn,2) = cadk(k)* v(k,ipn)+cadp(k)* v(k+1l,ipn)
end do

IACCS$THREAD (nz-1) BEGIN
bedgvar(nz,ipn,l)= cadk(nz)* u(nz,ipn)+cadp(nz)* u(nz,ipn)
bedgvar(nz,ipn,2)= bedgvar(nz,ipn,2)=cadk(nz)* v(nz,ipn)

+cadp(nz)* v(nz,ipn)

IACCSTHREAD END

end do

IACCSREGION END

&

Code with F2C-ACC & OpenACC

IACCSREGION(<96>,<10242>) BEGIN
!Sacc parallel num gangs(10242) vector length(96)
IACC$DO PARALLEL(1)
!Sacc loop gang
do ipn=ips,ipe
IACCS$DO VECTOR(1)
!Sacc loop vector
do k=1,nz-1

bedgvar(k,ipn,1l) = cadk(k)* u(k,ipn)+cadp(k)* u(k+l,ipn)
bedgvar(k,ipn,2) = cadk(k)* v(k,ipn)+cadp(k)* v(k+l,ipn)
end do
IACC$THREAD (nz-1) BEGIN
bedgvar(nz,ipn,1l)= cadk(nz)* u(nz,ipn)+cadp(nz)* u(nz,ipn)
bedgvar(nz,ipn,2)= bedgvar(nz,ipn,2)=cadk(nz)* v(nz,ipn)
IACCSTHREAD END
enddo

!Sacc end parallel
!Sacc end data
!ACCSREGION END

 OpenACC’s kernel directive was also tried
— Slower performance
— User has less control over parallelization

OpenACC Compiler Evaluation (2014)

e Results shared with NVIDIA, PGlI, Cray
— Correctness: improving, bugs reported to vendors
— Performance: Significantly slower than F2C-ACC

NIM Dynamics Runtimes in seconds, 100 time steps, single precision, single GPU

Routine (% of CPU F2C-ACC PGI - OpenACC Cray - OpenACC

Vdmints! (38%) 7.10 18.40 (2.6) 14.61 (2.1)
Vdmintv (15%) 3.59 7.19 (2.0) 550 (1.5)
Flux (9%) 1.06 1.94 (1.8) 1.52 (1.4)
Diag (8%) 0.81 2.00 (2.5) 0.89 (1.1)
Total (100%) 16.12 35.53 (2.2) 28.52 (1.8)

1 represents runtimes for 3 variants of the same routine

WRF Physics Runtimes in micro-seconds, 1 kernel invocation, double precision
Routine (% total) Cray - OpenACC
WSM3 (19%) 21.4 599.6 (28.0)
PBL (1%) 1.5 3.4 (2.3

OpenACC Compilers

e Sharing results with vendors

— Standalone tests to demonstrate bugs, performance
Issues

— Vendors are responsive

* Concerns about standard
— Prescriptive
 More user control, via directive
— Descriptive
 Compiler does the analysis

e Can ignore user specifications
* Black box — limited ability to optimize

— Making concerns known, suggesting improvements
* | represent NOAA on the OpenACC committee

NIM Performance: CPU, GPU, MIC

* |deal comparison
— ldentical source code
— Same CPU chip, different accelerators
— Multiple nodes linked using same interconnect
— Same software stack

* This comparison

— |dentical source code

* Changes that improve performance on one architecture
cannot degrade on the others

— Different CPU chips, same generation

— Single node performance
* not reliant on the interconnect
 CPU, GPU, MIC only
 Symmetric Mode: CPU + MIC, CPU + GPU

CPU
Socket

Node Configuration (2014)

2 nodes, 2 sockets, 2 accelerators

CPU

8 cores

CPU
Node 1

CPU

8 cores

8 cores

CPU
Node 2

CPU
8 cores

()
E; 93‘1:
@) (e

PCl/e
bus

(D)
E; 53‘1:
@) (an

)
c

O ‘
:

<
s

()
E; o ko
@) (e

Symmetric Execution on the GPU & MIC

2012-2013: Dynamics on MIC or GPU + Physics on CPU

MIC / GPU F2C-ACC / openMP F2C-ACC / openMP

CPU physics - openMP

MIC / GPU F2C-ACC / OpenMP F2C-ACC / openMP

CPU dynamics - openMP dynamics - openMP

MIC / GPU F2C-ACC / OpenMP physics — F2C-ACC F2C-ACC / OpenMP
physics - openMP | dynamics - openMP

OV dynamics - openMP

Single Node Performance: CPU, GPU,MIC

Parallelization and Performance
* Single source code (NIM rev 2724)

* Directive-based parallelization

— OpenMP CPU, MIC
— F2C-ACC GPU
— SMS MPI
— OpenACC GPU

System / Node configurations

* NVIDIA PSG Cluster
— IB20: Intel IvyBridge, 20 cores, 3.0 GHz (Intel E5-2690 v2)
— GPU: Kepler K40 2880 cores, 745 MHz, 12GB memory

* Intel Endeavor Cluster

— IB24: Intel lvyBridge 24 cores, 2.70 GHz
— MIC: KNC7120

(Intel E5-2697 v2)
61 cores, 1.238 GHz, 16 GB memory

http://www.esrl.noaa.gov/gsd/ab/ac/NIM-Performance.html

Single Node Performance: CPU, GPU, MIC

90 31 // \\ 120 KM Resolution (NIM — G6)
30 74 40,968 Columns, 96 Vertical Levels
73 100 time steps
70 .
58 Symmetric Mode CPU runtime
é 60 Execution MIC runtime
:: 50 46 GPU runtime
€ 42 using F2C-ACC
B
3
2 30
20
10
0
Node Type: IB20 only IB24 only MIC only GPU only 1B24 + MIC IB20 + GPU IB20 + 2 GPU

Parallelization and Performance

* Single source code (NIM rev 2724)
* Directive-based parallelization

— OpenMP CPU, MIC
— F2C-ACC GPU
— SMS MPI
— OpenACC GPU

System / Node configurations
. NVIDIA PSG Cluster
IB20: Intel IvyBridge,
GPU: Kepler K40

. Intel Endeavor Cluster
IB24: Intel IvyBridge
MIC: KNC 7120

20 cores, 3.0 GHz (Intel E5-2690 v2)
2880 cores, 745 MHz, 12GB memory

24 cores, 2.70 GHz (Intel E5-2697 v2)
61 cores, 1.238 GHz, 16 GB memory

http://www.esrl.noaa.gov/gsd/ab/ac/NIM-Performance.html

NIM: Scalability

Inter-process Communications

* Rely on Scalable Modeling System for inter-process
communications
— Directive-based, distributed memory parallelism (MPI)

— Halo update modified to support GPU —to — GPU comms
e 3 stages: Pack, MPI-EXCHANGE - Unpack

 Optimizations decrease communications overhead
from over 50% of runtime to less than 17% on Titan

— Move from individual pack & unpack kernels per variable

to a single kernel
* Template defining points to be exchanged set up at initialization

* Gave a 3x speedup for pack and unpack runtimes
— Use GPU mapped memory to improve GPU-CPU transfer
times
* Gave a 1.9x speedup in data copy
— Overlap communications with computation

NIM Performance: Strong Scaling (2014)

600

101

500 ——

S
o
o

w
o
o

Runtime (sec)

494

200

100

0

Num GPUs 80
Columns 32768

15KM resolution, 1000 time steps, no /0O
NVIDIA Kepler K20x GPU

 Computations scale well
— Best with more columns (work) per GPU
e Communications does not scale

— 16% (32768 columns) to 61% (256 columns)
of runtime

62.3

Communications

Computation

29.7
246 —

34.2
124

64.6

N
©
w

23.2 23.2

19.5 11.8 24

160 320 640 1280 2560 5120 10240
16384 8192 4096 2048 1024 512 256

w
>
~

Communication Optimizations - 2014

* Eliminate pack and unpack completely (50% of communications)

— Re-organize model grid points so data to be communicated is placed in
message buffers

— Pack and Unpack operations require half of the communications time

— Indirect addressing makes it easy to reorganize data points that do not
require changes to model code

e Further work to overlap communications with computation
— Work with scientists to restructure calculations

Currently: halo points are stored in no particular order

Var 1l
L L L L 1

Future: Columns will be re-organized so all halo points to a specific neighbor will be organized

in separate pack and unpack message buffers, determined at model startup
P2 | P3| P4 | P5

Var 1

o1 P2 | P3| P4 | P5

Estimated Total Cost of Ownership

Based on 2014 Hardware

 Hardware Costs: based on list price
— S$5000 - dual socket, 20 cores IvyBridge
— $3000 - Kepler K20x (Titan)

* Application Performance: Single node, CPU, CPU + GPU

* Annual Power Costs
— TBD: power measurements for an application run are needed

Hardware __[CPU______|GPU______|CPU+1GPU | CPU+2GPUS

Cost Factor (SS) 1 (S5000) 1.6 (S8000) 1.6 (S8000) 2.2 (S11000)
Perf Factor 1 1.4 1.8 2.5
cost benefit 0% -20% 20% 30%
Perf Factor ++ 1 1.4 2.5 3.3
cost-benefit ++ 0% -20% 90% 110%

++ Estimates based on optimizations to eliminate pack and unpack, per previous slide

