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Brief overview of NIM model

GPU parallelization of NIM using F2C-ACC
— Performance comparison to OpenACC Compilers

Performance and Scaling
— CPU, GPU, MIC

Two talks to follow on MIC parallelization
e Tom Henderson
— report on MIC parallelization of WRF physics routines
* Jim Rosinski

— Parallelization and performance of NIM and FIM



Non-Hydrostatic Icosahedral (NIM)

Global non-hydrostatic dynamical core
— Designed to run at 3.5KM resolution or finer scales

Uniform, global, hexagonal-based icosahedralgrid
— Single horizontal dimension, indexed via looKup table

Co-designed in 2008 for GPU ( and MIC )

— Scientists, parallel programmers, computer scientists

Single source code for CPU, GPU, MIC

— Directives used for parallelization
* OpenMP, OpenACC, F2C-ACC, SMS

Good Performance & Scalability

— Tested on up to 10000 GPUs, 1000 MIC Srray Structure

dynamics: a [ k, i ]

Runs with GFS & WRF physics physics: a [ i, k I

— ldealized, real-data tests in progress



NIM/FIM Icosahedral Grid

(MacDonald, Henderson, Middlecoff)

Use a single horizontal index
Etore n,l,meer of sides (5 or 6) in
nprox array
— nprox(34)=6
Store neighbor indices in “prox”
array
— prox(1,34) =515
— prox(2,19) =3
Array Organization

— Vertical dimension innermost

« Mitigates cost of grid cell lookup
table

— Indirect address costs ~1%
Very compact code



Grid Decomposition

NIM G4 (446 km) 10 MPI: Number of sends for each ¢

Decomposition Strategy
— Multiple of 10 MPI tasks is best

* Maps directly to rhombuses
— Eg. 60 MPI tasks means 10 per
rhombus
Grid layout within a MPI task
— Neighbor points together
— Square shape to minimize halo

Graphic shows decomposition
for 10 MPI tasks
— Interior points in dark blue

— Other colors are shared halo
points

Image courtesy of Jim Rosinski



F2C-ACC Compiler

Converts Fortran into CUDA

Developed in 2008 before commercial compilers were
available

Limited Capabilities, Scope, Support
— Mostly line for line code conversion with limited analysis
Used for NIM, FIM and some WRF physics

Performance optimizations added to directives as options
— Define loop parallelism, GPU shared & local memory

Used to evaluate OpenACC compilers (CAPS, PGl, Cray)
— Capability: Can they support FIM, NIM, WRF?
— Performance: Are they within ~10-20% of F2C-ACC?



Dynamics Code + F2C-ACC Directives

* Directives appear as Fortran comments

— ACCSREGION defines an accelerator region
— ACCSDO identifies parallelism
— ACCSTHREAD restricts parallelism to a single thread

IACCSREGION(<96>,<10242>) BEGIN
IACCSDO PARALLEL(1)

do ipn=ips,ipe ! Loop over horizontal
IACC$DO VECTOR(1)
do k=1,nz-1 ! Loop over vertical levels
bedgvar(k,ipn,1l) = cadk(k)* u(k,ipn)+cadp(k)* u(k+1l,ipn)
bedgvar(k,ipn,2) = cadk(k)* v(k,ipn)+cadp(k)* v(k+1l,ipn)
end do

IACCS$THREAD (nz-1) BEGIN
bedgvar(nz,ipn,l)= cadk(nz)* u(nz,ipn)+cadp(nz)* u(nz,ipn)
bedgvar(nz,ipn,2)= bedgvar(nz,ipn,2)=cadk(nz)* v(nz,ipn)

+cadp(nz)* v(nz,ipn)

IACCSTHREAD END

end do

IACCSREGION END

&



Code with F2C-ACC & OpenACC

IACCSREGION(<96>,<10242>) BEGIN
!Sacc parallel num gangs(10242) vector length(96)
IACC$DO PARALLEL(1)
!Sacc loop gang
do ipn=ips,ipe
IACCS$DO VECTOR(1)
!Sacc loop vector
do k=1,nz-1

bedgvar(k,ipn,1l) = cadk(k)* u(k,ipn)+cadp(k)* u(k+l,ipn)
bedgvar(k,ipn,2) = cadk(k)* v(k,ipn)+cadp(k)* v(k+l,ipn)
end do
IACC$THREAD (nz-1) BEGIN
bedgvar(nz,ipn,1l)= cadk(nz)* u(nz,ipn)+cadp(nz)* u(nz,ipn)
bedgvar(nz,ipn,2)= bedgvar(nz,ipn,2)=cadk(nz)* v(nz,ipn)
IACCSTHREAD END
enddo

!Sacc end parallel
!Sacc end data
!ACCSREGION END

 OpenACC’s kernel directive was also tried
— Slower performance
— User has less control over parallelization



OpenACC Compiler Evaluation (2014)

e Results shared with NVIDIA, PGlI, Cray
— Correctness: improving, bugs reported to vendors
— Performance: Significantly slower than F2C-ACC

NIM Dynamics Runtimes in seconds, 100 time steps, single precision, single GPU

Routine (% of CPU F2C-ACC PGI - OpenACC Cray - OpenACC

Vdmints!  (38%) 7.10 18.40 (2.6) 14.61 (2.1)
Vdmintv  (15%) 3.59 7.19 (2.0) 550 (1.5)
Flux ( 9%) 1.06 1.94 (1.8) 1.52 (1.4)
Diag ( 8%) 0.81 2.00 (2.5) 0.89 (1.1)
Total (100%) 16.12 35.53 (2.2) 28.52 (1.8)

1 represents runtimes for 3 variants of the same routine

WRF Physics Runtimes in micro-seconds, 1 kernel invocation, double precision
Routine (% total) Cray - OpenACC
WSM3 (19%) 21.4 599.6 (28.0)
PBL ( 1%) 1.5 3.4 (2.3




OpenACC Compilers

e Sharing results with vendors

— Standalone tests to demonstrate bugs, performance
Issues

— Vendors are responsive

* Concerns about standard
— Prescriptive
 More user control, via directive
— Descriptive
 Compiler does the analysis

e Can ignore user specifications
* Black box — limited ability to optimize

— Making concerns known, suggesting improvements
* | represent NOAA on the OpenACC committee



NIM Performance: CPU, GPU, MIC

* |deal comparison
— ldentical source code
— Same CPU chip, different accelerators
— Multiple nodes linked using same interconnect
— Same software stack

* This comparison

— |dentical source code

* Changes that improve performance on one architecture
cannot degrade on the others

— Different CPU chips, same generation

— Single node performance
* not reliant on the interconnect
 CPU, GPU, MIC only
 Symmetric Mode: CPU + MIC, CPU + GPU



CPU
Socket

Node Configuration (2014)
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Symmetric Execution on the GPU & MIC

2012-2013: Dynamics on MIC or GPU + Physics on CPU

MIC / GPU F2C-ACC / openMP F2C-ACC / openMP

CPU physics - openMP

MIC / GPU F2C-ACC / OpenMP F2C-ACC / openMP

CPU dynamics - openMP dynamics - openMP

MIC / GPU F2C-ACC / OpenMP physics — F2C-ACC F2C-ACC / OpenMP
physics - openMP | dynamics - openMP

OV  dynamics - openMP




Single Node Performance: CPU, GPU,MIC

Parallelization and Performance
* Single source code (NIM rev 2724)

*  Directive-based parallelization

— OpenMP CPU, MIC
— F2C-ACC GPU
— SMS MPI
— OpenACC GPU

System / Node configurations

*  NVIDIA PSG Cluster
— IB20: Intel IvyBridge, 20 cores, 3.0 GHz (Intel E5-2690 v2)
— GPU: Kepler K40 2880 cores, 745 MHz, 12GB memory

* Intel Endeavor Cluster

— IB24: Intel lvyBridge 24 cores, 2.70 GHz
— MIC: KNC7120

(Intel E5-2697 v2)
61 cores, 1.238 GHz, 16 GB memory

http://www.esrl.noaa.gov/gsd/ab/ac/NIM-Performance.html




Single Node Performance: CPU, GPU, MIC

90 31 // \\ 120 KM Resolution (NIM — G6)
30 74 40,968 Columns, 96 Vertical Levels
73 100 time steps
70 .
58 Symmetric Mode CPU runtime
é 60 Execution MIC runtime
:: 50 46 GPU runtime
€ 42 using F2C-ACC
B
3
2 30
20
10
0
Node Type: IB20 only IB24 only MIC only GPU only 1B24 + MIC IB20 + GPU IB20 + 2 GPU

Parallelization and Performance

* Single source code (NIM rev 2724)
*  Directive-based parallelization

— OpenMP CPU, MIC
— F2C-ACC GPU
— SMS MPI
— OpenACC GPU

System / Node configurations
. NVIDIA PSG Cluster
IB20: Intel IvyBridge,
GPU: Kepler K40

. Intel Endeavor Cluster
IB24: Intel IvyBridge
MIC: KNC 7120

20 cores, 3.0 GHz (Intel E5-2690 v2)
2880 cores, 745 MHz, 12GB memory

24 cores, 2.70 GHz (Intel E5-2697 v2)
61 cores, 1.238 GHz, 16 GB memory

http://www.esrl.noaa.gov/gsd/ab/ac/NIM-Performance.html




NIM: Scalability

Inter-process Communications

* Rely on Scalable Modeling System for inter-process
communications
— Directive-based, distributed memory parallelism (MPI)

— Halo update modified to support GPU —to — GPU comms
e 3 stages: Pack, MPI-EXCHANGE - Unpack

 Optimizations decrease communications overhead
from over 50% of runtime to less than 17% on Titan

— Move from individual pack & unpack kernels per variable

to a single kernel
* Template defining points to be exchanged set up at initialization

* Gave a 3x speedup for pack and unpack runtimes
— Use GPU mapped memory to improve GPU-CPU transfer
times
* Gave a 1.9x speedup in data copy
— Overlap communications with computation



NIM Performance: Strong Scaling (2014)
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e Communications does not scale
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Communication Optimizations - 2014

* Eliminate pack and unpack completely (50% of communications)

— Re-organize model grid points so data to be communicated is placed in
message buffers

— Pack and Unpack operations require half of the communications time

— Indirect addressing makes it easy to reorganize data points that do not
require changes to model code

e Further work to overlap communications with computation
— Work with scientists to restructure calculations

Currently: halo points are stored in no particular order

Var 1l
L L L L 1

Future: Columns will be re-organized so all halo points to a specific neighbor will be organized

in separate pack and unpack message buffers, determined at model startup
P2 | P3| P4 | P5

Var 1

o1 P2 | P3| P4 | P5



Estimated Total Cost of Ownership

Based on 2014 Hardware

 Hardware Costs: based on list price
— S$5000 - dual socket, 20 cores IvyBridge
— $3000 - Kepler K20x (Titan)

* Application Performance: Single node, CPU, CPU + GPU

* Annual Power Costs
— TBD: power measurements for an application run are needed

Hardware __[CPU______|GPU______|CPU+1GPU | CPU+2GPUS

Cost Factor (SS) 1 (S5000) 1.6 (S8000) 1.6 (S8000) 2.2 (S11000)
Perf Factor 1 1.4 1.8 2.5
cost benefit 0% -20% 20% 30%
Perf Factor ++ 1 1.4 2.5 3.3
cost-benefit ++ 0% -20% 90% 110%

++ Estimates based on optimizations to eliminate pack and unpack, per previous slide



