LUT

Lappeenranta
g University of Technalogy

Stabilized approximate Kalman filter and
Its extension towards parallel
Implementation

10/2014

s

Open your mind. LUT.

Lappeenranta

Contents

Data assimilation at glance

Approximating Extended Kalman filter using BFGS: instability
Stabilizing correction for approximate EKF

Combined state space and parallel filtering

Current test case: the Two-Layer Quasi-Geostrophic model
Experimental results

The next test case: large-scale Shallow Water model
CUDA accelerated implementation
Example runs

s

Open your mind. LUT.

Lappeenranta

Consider coupled system of stochastic equations:
X1 = My (xx) + &,
Vier1 = Hier1Cg41) + Mkt1)
where x; (€ R™) describes system state at time instance k,

Vi+1 (€ R™) is observed data obtained at time instance k + 1,

M, Is state transition operator, and H;,,; IS observation mapping
describing how system state relates to the observed data at a
certain time instance,

&, and n, 4, are random terms that model prediction and
observation uncertainties.

The task: given the estimate x£** of state x;, and observation
Vi+1 derive estimate x£3% .

s

Open your mind. LUT.

Lappeenranta

Denote €, = Cov(xy), Ce, = Cov(ey), Cy,,, = COV(Nj41)
Recall formulation of the Extended Kalman filter:
Run the forecast model: x;,, = M (xi),

Estimate forecast covariance: Cy,, = Cov(x},,) = M{*C.M{P + C,,,

Compute the Kalman gain: Gy = Coyy Hithy (HES CRu HER + Cy)

Compute state estimate: x£35 = xb,; + Gry1 (Vi1 — HExixh, L),

: : est 4 p
Find covariance of the estimate: €54 = Cpyy — Gre1Hig1Cryq-
Problem: Large dimension of state x; induces issues at covariance matrix
storage

Solution: approximate problematic matrices the same way as it is done for
Hessians of large-scale optimization problems

s

Open your mind. LUT.

Lappeenranta

Run forecast model: x?, , = M (x;),

At the code level define operator implementing forecast covariance matrix:
C]ZC9+1 Mk xk+1M + Cgk)
Apply L-BFGS minimization to auxiliary quadratic cost function:

f(x) =xTAx — xTb,
where A = H{% Cr Higdy + Gy, and b = ypq — Hik xh 0,

Assign x* to the minimizer of f(x) and B* to approximation of Hessian
matrix A produced as part of output from L-BFGS

Compute state estimate: x£35 = xt, ;| + Cry 1 HiP x*

Approximate covariance matrix of the estimate by applying L-BFGS
minimization to a quadratic cost function with Hessian defined as follows:

p _ b p
Ck+1 Ck+1Hk+1B Hk+1Ck+1

*See H. Auvinen et. al. “The variational Kalman filter and an efficient implementation using limited
memory BFGS”

s

Open your mind. LUT.

Lappeenranta

p p
Approxmate estimate covariance matrix C;,, — Cp,,Hi B*HE %1 Cr, . may have

“non-physical” negative eigenvalues as B* is itself approximation of prior covariance
projected onto the observation space:

-1
~ (Hk+1CI€+1Hk+1 + C77k+1)
L-BFGS on the other hand relies on the eigenvalues of Hessian being non-negative

We correct this problem by injecting “stabilizing correction”, i.e. we replace B* by
(21 — B*A)B*.

Let us denote C; ., — Cy, HiP (21 — B*A)B*H(;. Cy, , as CF3L.

Lemma. For any symmetric matrix B*, the matrix C;, , is non-negative. Moreover, as
B* - A~! necessarily €35, — €254 and the following inequalities hold:

ICest — cessll. < NAN|HTE CP,, 5 1B — A7112,

1Cesh — ;?i%||<IIAIIIIHk+1 c? 18" — a1z

s

Open your mind. LUT.

Lappeenranta

The current test case for DA testing purposes is provided by Two-
Layer Quasi-Geostrophic model:

Simulates “slow” wind motions
Resides on cylindrical surface vertically divided into two layers

The boundary conditions are periodic in zonal direction and fixed
at the top and at the bottom of the cylinder

The model is chaotic, dimension can be adjusted by changing
resolution of the spatial grid

Provides a neat toy-case, which can be run with no special
hardware

*See C.Fandry and L.Leslie, “A two-layer quasi-geostrophic model of summer trough
formation in the Australian subtropical easterlies”.

s

Open your mind. LUT.

Lappeenranta

Governing equations with respect to unknown stream function y; (x, y)
a1 = VP — FL(1 — ;) + By,
Az = VP — F,(¥, — 1) + By + Rs,

D1q4 _ D>q> —0
Dt Dt ’
where R, = R;(x,y) is orography surface,
by _o, 0 , O = (. —y
=t Ui+ " and Vy; = (v;, —u;).

The equations are numerically solved by combining finite-difference
approximation of derivatives with semi-Lagrangian advection

™ 4

Current toy-case: the QG-model Open your mind. LUT.

Lappeenranta

< > Layer interaction
interface
~ -

Topography

QG-model: chaotic behavior Open your mind. LUT.

Lappeenranta

Biased run, bottom layer Biased run, top layer
20

18
16
14
12
10

N b O ®

Truth run, bottom layer Truth run, top layer

s

Open your mind. LUT.

Lappeenranta

Data assimilation performance was tested in emulated environment: we ran
two instances of the qg-model at different resolutions and used one to
emulate observations and the other to make predictions

Observations were collected from a sparse subset of the state vector
elements

Predictions were made at lower resolution then the “truth” and the values of
the depths of the model layers were biased

Sources of incoming observations were interpolated onto the spatial grid of
lower-resolution model by bilinear interpolation

Estimation quality was measured by root mean square error

We run several experiments at different resolutions and with different
number of observations employing stabilized BFGS EKF, usual uncorrected
BFGS EKF, weak-constraint 4D-VAR and the parallel filter

Convergence with and without

the stabilizing correction

™ 4

Open your mind. LUT.

Lappeenranta

No. | Truth run res. | Biased run res. | Obs. num. | State dim.
1 10-by-10 9-by-9 50 162
2 15-by-15 12-by-12 85 288
3 80-by-40 40-by-20 500 1600

Table 1: Benchmark options depending on model resolution.

Benchmark

I IT I11
BFGS-EKF | SA-EKF | BFGS-EKF | SA-EKF | BFGS-EKF | SA-EKF
=1 5 0.5860 0.5508 — 0.6476 — 0.4102%*
S 10 | 05573 | 0.5445 | 0.7021 | 0.6718 - 0.4412
% 15 0.4959 0.4788 0.5807 0.5690 — 0.3815
= | 20 0.4686 0.4695 0.5195 0.5152 0.3686 0.3656

EKF ref. 0.4247 0.4346 0.2694

Table 2: Mean values of RMS error obtained from the benchmarks using varied

capacity of the BFGS storage.

s

Open your mind. LUT.

Lappeenranta

Consider combined state and observation vectors
X = (xk—P+1:xk—P+2; ---;xk),

Vi = Vk—p+2: Yi—P+3s =1 Yict1)-
We extend transition and observation operators onto combined state space:

M (%) = (Mi_pir Cr—pi1) Mi_pyz Ocx_pr2), o, My (1),
Hier1 (i) = (}[k—P+2(xk—P+2), Hi—pr3(Xk_ps3), ---»}[k+1(xk+1))-

We call the data assimilation problem formulated for M}, and H} ., the
parallel filtering task.

s

Open your mind. LUT.

Lappeenranta

Model error covariance C,, and observation error covariance C, . can be
extended to combined state and observation spaces as follows:

_ Cek—P+1 0
Cgk = e,

0 Ce,

_ C’?k—P+2 0

nk+1 = nn T ann
0 .. Gy,

Adding non zero off-diagonal terms into definition of C,, and C,, , . allows to

account for time-correlated prediction and observation errors, which relaxes

one of the classical assumptions used by derivation of the Kalman filter
formulae

s

Open your mind. LUT.

Lappeenranta

Allows to account for cross-time correlations between the states included
into analysis

Combines observations from several time steps, which should help in case
of deficient observations

Enables natural parallel implementation, as model propagations within
combined state are executed independently

Retrospective analysis of the older states are computed as part of the
normal algorithm’s output with no extra outlay

Main problem: parallel filtering task is extremely large scale, which means that
a highly-compressed packaging of covariance data is required.

Solution: Use L-BFGS approximation with stabilization introduced earlier.

s

Open your mind. LUT.

Lappeenranta

Consider combined transition operator M; and combined observation mapping
H, 1. Assume that x? is a prior state estimate at time instance k — P + 1. Then
weak-constraint 4D-Var estimate is calculated by minimizing the following cost
function with respect to xy:

(% |k, xP) = Ry (R, Tie) + R (Kx) + Rz (xp—pr1, x7)
R, (xk, Vi) defines measure for observation discrepancy:

Ry Xy Vie+1) = Dico 1Vi—pr1+i — }[k—P+2+i(xk—P+1+i)||2n—kl_P+1+i-

R, (x;) smoothing part, accounts for prediction errors:

R (%) = Xioq 1xk—ps1+i = Mi—pai Ok—ps)

Rs(xk_ps1,xP) penalizes discrepancy with the prior:

2
-1 .
Qk-p+i+1

RS(xk—P+1rxb) = ||xk—P+1 - xb”Z—l'

*See Y. Tréemolet “Accounting for an imperfect model in 4D-Var”

s

Open your mind. LUT.

Lappeenranta

Weak-constraint 4D-Var
employs the concept of time
window composed of a few
consequent states.

Propagations of each state over
the time are performed
independently from each other
and thus can be executed in
parallel.

It is allowed to have a “jump” g;
between prediction M;(x;) and Oh 6h 12h 18h 24h 30h
the next state x;,;. This

accounts for prediction error.

Forecast is defined by prediction
made from the state located at
the end of the window

s

Open your mind. LUT.

Lappeenranta

Estimation task of the parallel filter can be reformulated in terms of the
following cost function, which should be minimized with respect to Xx:

(Enli, %) = Ra (T, 1) + R (T, 7).
R, (X, ¥i) penalizes discrepancy between observation and the estimate:

= 5) — V'P-1 2
R1 Xk, Vi) = Do IVk-p+1+i — }[k—P+1+i(xk—P+1+i)”C771 K
k—P+1+i

R, (fk, f,f) penalizes discrepancy between the estimate and the forecast:
_ _ _p2 _ — _
Ra (%, %) = || i — X,’z”(C_ﬁtl)—l, where ¥, = Mj,_,(x£54).

If CFSY, is block-diagonal (it is usually not in practice), then R, (%, X) can be
reduced to the following sum:

= = — \VP—-1 p
Rl(xk; yk) — Li=0 ||xk—P+1+i — xk—P+1+i||(Cest] —-1.
k—P+1+i

s

Open your mind. LUT.

Lappeenranta

If C£SY, is block-diagonal then parallel filtering effectively reduces to weak-
constraint 4D-Var with fixed predictions xlp = M;_1(x;_1).

If parameter ff in the parallel filtering likelihood function is allowed to vary
during minimization and C£3%, is block-diagonal, then parallel filtering becomes
equivalent to the weak-constraint 4D-Var.

In parallel filtering we do not need to assume block-diagonal approximations of
covariance matrices, which enables cross-correlations between time sub-
windows. In Weak-Constraint 4D-Var the same effect is achieved by unfixed
value of x?.

Dimension of the data assimilation problem defined by parallel filtering can be

effectively treated by low-memory approaches provided by L-BFGS EKF
approximation with stabilizing correction.

s

Open your mind. LUT.

Lappeenranta

The total window comprised three 6-hour sub-windows (18-hour analysis)
Dimension of combined state for 18-hour window was 4800

BFGS storage capacity was set to 20 vectors

Quality of obtained estimates was measured by root mean square error

The results were compared against usual single-state SA-EKF and weak-constraint
4D-VAR

Model used to simulate observations had spatial grid resolution 40-by-80 points in
both layers

Prediction model used 4-times smaller resolution of 20-by-40 points in both layers
Integration time step was set to one hour of model time

™ 4

Test of concept: 10 observations Open your mind. LUT.

Lappeenranta

6 x x I
Retrospective analysis 1
Retrospective analysis 2
Data assimilation
Stabilized L-BFGS EKF

RMSerror

[[[[

0 20 40 60 80 100 120
Data assimilation step

™ 4

Test of concept: 20 observations Open your mind. LUT.

Lappeenranta

6 [[\
Retrospective analysis 1
Retrospective analysis 2
Data assimilation
Stabilized L-BFGS-EKF

RMSerror

[[[[

0 20 40 60 80 100 120
Data assimilation step

RMSerror

s

Open your mind. LUT.

Lappeenranta

[

Retrospective analysis 1
Retrospective analysis 2
Data assimilation
Stabilized L-BFGS-EKF

20

40

60
Data assimilation step

80

100

120

Root mean square error

14

12

10

[L)

Filtering performance: 200 observations

s

Open your mind. LUT.

Lappeenranta

—Parallel SA-EKF

— SA-EKF

—Weak-Constraint 4D-YAR

——Q—&Pﬂ—ﬂ-ﬂr

20

60
Assimilation step

80

100

120

s

Open your mind. LUT.

Lappeenranta

(he + (hu), + (hv),, = 0,
(hu), + (hu2 + %ghz)x + (huv),, = —ghB, — guvu? + v?/CZ,

. -

\(hu)t + (huv), + (hu2 + %ghz) = —ghB, — gvvu? + v?/CZ,
y

Here h denotes water elevation, u and v are horizontal and vertical velocity
components, B, and B, denote gradient direction of the surface implementing

topography, g is acceleration of gravity, C, is the Chézy coefficient.

It is possible to account for additional phenomena (e.g. wind stresses, friction etc.)
by udjusting the right-hand-side part of the equations

*See http://www.sintef.no/Projectweb/Heterogeneous-Computing/Research-
Topics/Shallow-Water/ for details on practical application of the model

http://www.sintef.no/Projectweb/Heterogeneous-Computing/Research-Topics/Shallow-Water/

Numerics:

Open your mind. LUT.

Discretization by finite volumes

 Numerics: Kurganov-Petrova second-order well-balanced positivity

preserving central-upwind scheme
 The problem is solved for a huge set of discretization cells that

form a staggered grid.

Numerics: .
. .) Open your mind. LUT.
fitting with GPU architecture

Thread(j,k) Thread(j+1,k)

w E
Uj.k+1 Uj+1,k+1

Thread(j,k+1) Thread(j+1,k+1)

s

Open your mind. LUT.

Lappeenranta

Single call to cudaMalloc(...) to allocate a huge linear block of memory. The
needed part is then accessed by the offsets.

Extensive use of the shared memory: neighboring cells propagate their
“boundary conditions” between each other through the CUDA shared
memory

No intermediate transfers to the host: all computations are done on the
GPU-side

The grid is horizontally divided between all available GPUs. Pinned memory
IS used for data exchange to minimize the I/O workload (albeit, this part
needs more testing)

The serial part of the code is reduced to data initialization, hence the impact
of the Amdahl’s law is minimal — the code scales very good with growth of
the spatial resolution (one can run up to 3 000 000 dimensional shallow
water in very this laptop!)

Under certain conditions we were able to reach 100x performance boost
over CPU-hosted implementation based on intel MKL routines

s

Open your mind. LUT.

Lappeenranta

Presented an algorithm based on Kalman filter approximation, which is able
to preserve stability when applied to large-scale dynamics

A further improvement for the approach based on parallelization is
introduced

Both concepts are tested with a toy-case chaotic model, which can be made
fairly large-scale by increasing spatial discretization

A new test model, which can be run at a very high resolution on widely
available hardware is implemented (thanks to CUDA!)

s

Open your mind. LUT.

Lappeenranta

