
Stabilized approximate Kalman filter and

its extension towards parallel

implementation

An example of two-layer Quasi-Geostrophic

model + CUDA-accelerated shallow water

Alex Bibov, Heikki Haario

10/2014

Contents

• Data assimilation at glance
• Approximating Extended Kalman filter using BFGS: instability
• Stabilizing correction for approximate EKF
• Combined state space and parallel filtering
• Current test case: the Two-Layer Quasi-Geostrophic model
• Experimental results

• The next test case: large-scale Shallow Water model
• CUDA accelerated implementation
• Example runs

Data assimilation at glance

− Consider coupled system of stochastic equations:

𝑥𝑘+1 = ℳ𝑘 𝑥𝑘 + 𝜀𝑘 ,
𝑦𝑘+1 = ℋ𝑘+1 𝑥𝑘+1 + 𝜂𝑘+1,

where 𝑥𝑘 ∈ ℝ𝑛 describes system state at time instance 𝑘,

𝑦𝑘+1 ∈ ℝ𝑚 is observed data obtained at time instance 𝑘 + 1,

ℳ𝑘 is state transition operator, and ℋ𝑘+1 is observation mapping

describing how system state relates to the observed data at a

certain time instance,

𝜀𝑘 and 𝜂𝑘+1 are random terms that model prediction and

observation uncertainties.

− The task: given the estimate 𝑥𝑘
𝑒𝑠𝑡 of state 𝑥𝑘 and observation

𝑦𝑘+1 derive estimate 𝑥𝑘+1
𝑒𝑠𝑡 .

Approximating the EKF

− Denote 𝐶𝑘 = 𝐶𝑜𝑣 𝑥𝑘 , 𝐶𝜀𝑘
= 𝐶𝑜𝑣 𝜀𝑘 , 𝐶𝜂𝑘+1

= 𝐶𝑜𝑣(𝜂𝑘+1)

− Recall formulation of the Extended Kalman filter:

1. Run the forecast model: 𝑥𝑘+1
𝑝

= ℳ𝑘(𝑥𝑘),

2. Estimate forecast covariance: 𝐶𝑘+1
𝑝

= 𝐶𝑜𝑣 𝑥𝑘+1
𝑝

= 𝑀𝑘
𝑇𝐿𝐶𝑘𝑀𝑘

𝐴𝐷 + 𝐶𝜀𝑘
,

3. Compute the Kalman gain: 𝐺𝑘+1 = 𝐶𝑘+1
𝑝

𝐻𝑘+1
𝐴𝐷 𝐻𝑘+1

𝑇𝐿 𝐶𝑘+1
𝑝

𝐻𝑘+1
𝐴𝐷 + 𝐶𝜂𝑘+1

−1
,

4. Compute state estimate: 𝑥𝑘+1
𝑒𝑠𝑡 = 𝑥𝑘+1

𝑝
+ 𝐺𝑘+1 𝑦𝑘+1 − 𝐻𝑘+1

𝑇𝐿 𝑥𝑘+1
𝑝

,

5. Find covariance of the estimate: 𝐶𝑘+1
𝑒𝑠𝑡 = 𝐶𝑘+1

𝑝
− 𝐺𝑘+1𝐻𝑘+1

𝑇𝐿 𝐶𝑘+1
𝑝

.

− Problem: Large dimension of state 𝑥𝑘 induces issues at covariance matrix

storage

− Solution: approximate problematic matrices the same way as it is done for

Hessians of large-scale optimization problems

EKF approximation based on BFGS*

1. Run forecast model: 𝑥𝑘+1
𝑝

= ℳ𝑘 𝑥𝑘 ,

2. At the code level define operator implementing forecast covariance matrix:

𝐶𝑘+1
𝑝

= 𝑀𝑘
𝑇𝐿𝑥𝑘+1

𝑝
𝑀𝑘

𝐴𝐷 + 𝐶𝜀𝑘
,

3. Apply L-BFGS minimization to auxiliary quadratic cost function:

𝑓 𝑥 = 𝑥𝑇𝐴𝑥 − 𝑥𝑇𝑏,

where 𝐴 = 𝐻𝑘+1
𝑇𝐿 𝐶𝑘+1

𝑝
𝐻𝑘+1

𝐴𝐷 + 𝐶𝜂𝑘+1
, and 𝑏 = 𝑦𝑘+1 − 𝐻𝑘+1

𝑇𝐿 𝑥𝑘+1
𝑝

,

4. Assign 𝑥∗ to the minimizer of 𝑓(𝑥) and 𝐵∗ to approximation of Hessian
matrix 𝐴 produced as part of output from L-BFGS

5. Compute state estimate: 𝑥𝑘+1
𝑒𝑠𝑡 = 𝑥𝑘+1

𝑝
+ 𝐶𝑘+1𝐻𝑘+1

𝐴𝐷 𝑥∗

6. Approximate covariance matrix of the estimate by applying L-BFGS
minimization to a quadratic cost function with Hessian defined as follows:

𝐶𝑘+1
𝑝

− 𝐶𝑘+1
𝑝

𝐻𝑘+1
𝐴𝐷 𝐵∗𝐻𝑘+1

𝑇𝐿 𝐶𝑘+1
𝑝

*See H. Auvinen et. al. “The variational Kalman filter and an efficient implementation using limited
memory BFGS”

BFGS EKF: Instability problem

− Approximate estimate covariance matrix 𝐶𝑘+1
𝑝

− 𝐶𝑘+1
𝑝

𝐻𝑘+1
𝐴𝐷 𝐵∗𝐻𝑘+1

𝑇𝐿 𝐶𝑘+1
𝑝

may have

“non-physical” negative eigenvalues as 𝐵∗ is itself approximation of prior covariance

projected onto the observation space:

𝐵∗ ≈ 𝐻𝑘+1
𝑇𝐿 𝐶𝑘+1

𝑝
𝐻𝑘+1

𝐴𝐷 + 𝐶𝜂𝑘+1

−1

− L-BFGS on the other hand relies on the eigenvalues of Hessian being non-negative

− We correct this problem by injecting “stabilizing correction”, i.e. we replace 𝐵∗ by

2𝐼 − 𝐵∗𝐴 𝐵∗.

− Let us denote 𝐶𝑘+1
𝑝

− 𝐶𝑘+1
𝑝

𝐻𝑘+1
𝐴𝐷 2𝐼 − 𝐵∗𝐴 𝐵∗𝐻𝑘+1

𝑇𝐿 𝐶𝑘+1
𝑝

as 𝐶𝑘+1
𝑒𝑠𝑡 .

Lemma. For any symmetric matrix 𝐵∗, the matrix 𝐶𝑘+1
𝑝

is non-negative. Moreover, as

𝐵∗ → 𝐴−1 necessarily 𝐶𝑘+1
𝑒𝑠𝑡 → 𝐶𝑘+1

𝑒𝑠𝑡 and the following inequalities hold:

 𝐶𝑘+1
𝑒𝑠𝑡 − 𝐶𝑘+1

𝑒𝑠𝑡
𝐹𝑟

≤ 𝐴 𝐻𝑘+1
𝑇𝐿 𝐶𝑘+1

𝑝

𝐹𝑟

2
𝐵∗ − 𝐴−1 2,

 𝐶𝑘+1
𝑒𝑠𝑡 − 𝐶𝑘+1

𝑒𝑠𝑡 ≤ 𝐴 𝐻𝑘+1
𝑇𝐿 𝐶𝑘+1

𝑝 2
𝐵∗ − 𝐴−1 2.

Current toy-case: the QG-model*

− The current test case for DA testing purposes is provided by Two-

Layer Quasi-Geostrophic model:

− Simulates “slow” wind motions

− Resides on cylindrical surface vertically divided into two layers

− The boundary conditions are periodic in zonal direction and fixed

at the top and at the bottom of the cylinder

− The model is chaotic, dimension can be adjusted by changing

resolution of the spatial grid

− Provides a neat toy-case, which can be run with no special

hardware

*See C.Fandry and L.Leslie, “A two-layer quasi-geostrophic model of summer trough

formation in the Australian subtropical easterlies”.

Current toy-case: the QG-model

− Governing equations with respect to unknown stream function 𝜓𝑖 𝑥, 𝑦
𝑞1 = 𝛻2𝜓1 − 𝐹1 𝜓1 − 𝜓2 + 𝛽𝑦,

𝑞2 = 𝛻2𝜓2 − 𝐹2 𝜓2 − 𝜓1 + 𝛽𝑦 + 𝑅𝑠,
𝐷1𝑞1

𝐷𝑡
=

𝐷2𝑞2

𝐷𝑡
= 0,

where 𝑅𝑠 = 𝑅𝑠 𝑥, 𝑦 is orography surface,

𝐷𝑖⋅

𝐷𝑡
=

𝜕⋅

𝜕𝑡
+ 𝑢𝑖

𝜕⋅

𝜕𝑥
+ 𝑣𝑖

𝜕⋅

𝜕𝑦
and 𝛻𝜓𝑖 = 𝑣𝑖 , −𝑢𝑖 .

− The equations are numerically solved by combining finite-difference

approximation of derivatives with semi-Lagrangian advection

Current toy-case: the QG-model

Topography

Bottom Layer

Top Layer

Layer interaction
interface

QG-model: chaotic behavior

Numerical experiments:

the QG-model

− Data assimilation performance was tested in emulated environment: we ran

two instances of the qg-model at different resolutions and used one to

emulate observations and the other to make predictions

− Observations were collected from a sparse subset of the state vector

elements

− Predictions were made at lower resolution then the “truth” and the values of

the depths of the model layers were biased

− Sources of incoming observations were interpolated onto the spatial grid of

lower-resolution model by bilinear interpolation

− Estimation quality was measured by root mean square error

− We run several experiments at different resolutions and with different

number of observations employing stabilized BFGS EKF, usual uncorrected

BFGS EKF, weak-constraint 4D-VAR and the parallel filter

Convergence with and without

the stabilizing correction

Parallel filter

− Consider combined state and observation vectors

 𝑥𝑘 = 𝑥𝑘−𝑃+1, 𝑥𝑘−𝑃+2, … , 𝑥𝑘 ,

 𝑦𝑘 = 𝑦𝑘−𝑃+2, 𝑦𝑘−𝑃+3, … , 𝑦𝑘+1 .

− We extend transition and observation operators onto combined state space:

 ℳ𝑘 𝑥𝑘 = ℳ𝑘−𝑃+1 𝑥𝑘−𝑃+1 , ℳ𝑘−𝑃+2 𝑥𝑘−𝑃+2 , … , ℳ𝑘 𝑥𝑘 ,

 ℋ𝑘+1 𝑦𝑘 = ℋ𝑘−𝑃+2 𝑥𝑘−𝑃+2 , ℋ𝑘−𝑃+3 𝑥𝑘−𝑃+3 , … , ℋ𝑘+1 𝑥𝑘+1 .

− We call the data assimilation problem formulated for ℳ𝑘 and ℋ𝑘+1 the

parallel filtering task.

Parallel filter: additional comments

− Model error covariance 𝐶𝜀𝑘
and observation error covariance 𝐶𝜂𝑘+1

can be

extended to combined state and observation spaces as follows:

 𝐶𝜀𝑘
=

𝐶𝜀𝑘−𝑃+1
… 𝑂

… … …
𝑂 … 𝐶𝜀𝑘

,

 𝐶𝜂𝑘+1
=

𝐶𝜂𝑘−𝑃+2
… 𝑂

… … …
𝑂 … 𝐶𝜂𝑘+1

.

− Adding non zero off-diagonal terms into definition of 𝐶𝜀𝑘
and 𝐶𝜂𝑘+1

allows to

account for time-correlated prediction and observation errors, which relaxes

one of the classical assumptions used by derivation of the Kalman filter

formulae

Parallel filter: additional comments

− Allows to account for cross-time correlations between the states included

into analysis

− Combines observations from several time steps, which should help in case

of deficient observations

− Enables natural parallel implementation, as model propagations within

combined state are executed independently

− Retrospective analysis of the older states are computed as part of the

normal algorithm’s output with no extra outlay

Main problem: parallel filtering task is extremely large scale, which means that

a highly-compressed packaging of covariance data is required.

Solution: Use L-BFGS approximation with stabilization introduced earlier.

Relation to the

Weak-Constraint 4D-Var*

− Consider combined transition operator ℳ𝑘 and combined observation mapping
 ℋ𝑘+1. Assume that 𝑥𝑏 is a prior state estimate at time instance 𝑘 − 𝑃 + 1. Then
weak-constraint 4D-Var estimate is calculated by minimizing the following cost
function with respect to 𝑥𝑘:

𝑙 𝑥𝑘| 𝑦𝑘 , 𝑥𝑏 = ℛ1 𝑥𝑘 , 𝑦𝑘 + ℛ2 𝑥𝑘 + ℛ3 𝑥𝑘−𝑃+1, 𝑥𝑏

− ℛ1 𝑥𝑘 , 𝑦𝑘 defines measure for observation discrepancy:

ℛ1 𝑥𝑘 , 𝑦𝑘+1 = 𝑖=0
𝑃−1 𝑦𝑘−𝑃+1+𝑖 − ℋ𝑘−𝑃+2+𝑖 𝑥𝑘−𝑃+1+𝑖 𝐶𝜂𝑘−𝑃+1+𝑖

−1
2 .

− ℛ2 𝑥𝑘 smoothing part, accounts for prediction errors:

ℛ2 𝑥𝑘 = 𝑖=1
𝑃−1 𝑥𝑘−𝑃+1+𝑖 − ℳ𝑘−𝑃+𝑖 𝑥𝑘−𝑃+𝑖 𝑄𝑘−𝑃+𝑖+1

−1
2 .

− ℛ3 𝑥𝑘−𝑃+1, 𝑥𝑏 penalizes discrepancy with the prior:

ℛ3 𝑥𝑘−𝑃+1, 𝑥𝑏 = 𝑥𝑘−𝑃+1 − 𝑥𝑏
𝐵−1

2
.

*See Y. Trémolet “Accounting for an imperfect model in 4D-Var”

Relation to the

Weak-Constraint 4D-Var

− Weak-constraint 4D-Var
employs the concept of time
window composed of a few
consequent states.

− Propagations of each state over
the time are performed
independently from each other
and thus can be executed in
parallel.

− It is allowed to have a “jump” 𝑞𝑖
between prediction ℳ𝑖 𝑥𝑖 and
the next state 𝑥𝑖+1. This
accounts for prediction error.

− Forecast is defined by prediction
made from the state located at
the end of the window

Relation to the

Weak-Constraint 4D-Var

− Estimation task of the parallel filter can be reformulated in terms of the

following cost function, which should be minimized with respect to 𝑥𝑘:

𝑙 𝑥𝑘| 𝑦𝑘 , 𝑥𝑘
𝑝

= ℛ1 𝑥𝑘 , 𝑦𝑘 + ℛ2 𝑥𝑘 , 𝑥𝑘
𝑝

.

− ℛ1 𝑥𝑘 , 𝑦𝑘 penalizes discrepancy between observation and the estimate:

ℛ1 𝑥𝑘 , 𝑦𝑘 = 𝑖=0
𝑃−1 𝑦𝑘−𝑃+1+𝑖 − ℋ𝑘−𝑃+1+𝑖 𝑥𝑘−𝑃+1+𝑖 𝐶𝜂𝑘−𝑃+1+𝑖

−1
2 ,

− ℛ2 𝑥𝑘 , 𝑥𝑘
𝑝

penalizes discrepancy between the estimate and the forecast:

ℛ2 𝑥𝑘 , 𝑥𝑘
𝑝

= 𝑥𝑘 − 𝑥𝑘
𝑝

 𝐶𝑘+1
𝑒𝑠𝑡 −1

2
, where 𝑥𝑘

𝑝
= ℳ𝑘−1 𝑥𝑘−1

𝑒𝑠𝑡 .

− If 𝐶𝑘+1
𝑒𝑠𝑡 is block-diagonal (it is usually not in practice), then ℛ2 𝑥𝑘 , 𝑥𝑘

𝑝
can be

reduced to the following sum:

ℛ1 𝑥𝑘 , 𝑦𝑘 = 𝑖=0
𝑃−1 𝑥𝑘−𝑃+1+𝑖 − 𝑥𝑘−𝑃+1+𝑖

𝑝

𝐶𝑘−𝑃+1+𝑖
𝑒𝑠𝑡 −1.

Relation to the

Weak-Constraint 4D-Var

− If 𝐶𝑘+1
𝑒𝑠𝑡 is block-diagonal then parallel filtering effectively reduces to weak-

constraint 4D-Var with fixed predictions 𝑥𝑖
𝑝

= ℳ𝑖−1 𝑥𝑖−1 .

− If parameter 𝑥𝑖
𝑝

in the parallel filtering likelihood function is allowed to vary

during minimization and 𝐶𝑘+1
𝑒𝑠𝑡 is block-diagonal, then parallel filtering becomes

equivalent to the weak-constraint 4D-Var.

− In parallel filtering we do not need to assume block-diagonal approximations of

covariance matrices, which enables cross-correlations between time sub-

windows. In Weak-Constraint 4D-Var the same effect is achieved by unfixed

value of 𝑥𝑖
𝑝
.

− Dimension of the data assimilation problem defined by parallel filtering can be

effectively treated by low-memory approaches provided by L-BFGS EKF

approximation with stabilizing correction.

Numerical experiments:

the QG-model

− The total window comprised three 6-hour sub-windows (18-hour analysis)

− Dimension of combined state for 18-hour window was 4800

− BFGS storage capacity was set to 20 vectors

− Quality of obtained estimates was measured by root mean square error

− The results were compared against usual single-state SA-EKF and weak-constraint

4D-VAR

− Model used to simulate observations had spatial grid resolution 40-by-80 points in

both layers

− Prediction model used 4-times smaller resolution of 20-by-40 points in both layers

− Integration time step was set to one hour of model time

Test of concept: 10 observations

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Data assimilation step

Retrospective analysis 1
Retrospective analysis 2
Data assimilation
Stabilized L-BFGS EKF

Test of concept: 20 observations

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Data assimilation step

Retrospective analysis 1
Retrospective analysis 2
Data assimilation
Stabilized L-BFGS-EKF

Test of concept: 30 observations

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

Data assimilation step

Retrospective analysis 1
Retrospective analysis 2
Data assimilation
Stabilized L-BFGS-EKF

Test of concept: 200 observations

Future case:

Large-Scale Shallow Water

−

ℎ𝑡 + ℎ𝑢 𝑥 + ℎ𝑣 𝑦 = 0,

ℎ𝑢 𝑡 + ℎ𝑢2 +
1

2
𝑔ℎ2

𝑥
+ ℎ𝑢𝑣 𝑦 = −𝑔ℎ𝐵𝑥 − 𝑔𝑢 𝑢2 + 𝑣2/𝐶𝑧

2,

ℎ𝑢 𝑡 + ℎ𝑢𝑣 𝑥 + ℎ𝑢2 +
1

2
𝑔ℎ2

𝑦
= −𝑔ℎ𝐵𝑦 − 𝑔𝑣 𝑢2 + 𝑣2/𝐶𝑧

2,

Here ℎ denotes water elevation, 𝑢 and 𝑣 are horizontal and vertical velocity

components, 𝐵𝑥 and 𝐵𝑦 denote gradient direction of the surface implementing

topography, 𝑔 is acceleration of gravity, 𝐶𝑧 is the Chézy coefficient.

− It is possible to account for additional phenomena (e.g. wind stresses, friction etc.)

by udjusting the right-hand-side part of the equations

*See http://www.sintef.no/Projectweb/Heterogeneous-Computing/Research-

Topics/Shallow-Water/ for details on practical application of the model

http://www.sintef.no/Projectweb/Heterogeneous-Computing/Research-Topics/Shallow-Water/

Numerics:

Discretization by finite volumes

𝑈𝑗,𝑘

𝑈𝑗,𝑘
𝑁

𝑈𝑗,𝑘
𝐸 𝑈𝑗,𝑘

𝑊

𝑈𝑗,𝑘
𝑆

• Numerics: Kurganov-Petrova second-order well-balanced positivity
preserving central-upwind scheme

• The problem is solved for a huge set of discretization cells that
form a staggered grid.

Numerics:

fitting with GPU architecture

𝑈𝑗+1,𝑘+1
𝑈𝑗+1,𝑘+1

𝑊

𝑈𝑗+1,𝑘+1
𝑁

𝑈𝑗+1,𝑘+1
𝑆

𝑈𝑗+1,𝑘+1
𝐸

𝑈𝑗+1,𝑘
𝑈𝑗+1,𝑘

𝑊

𝑈𝑗+1,𝑘
𝑁

𝑈𝑗+1,𝑘
𝑆

𝑈𝑗+1,𝑘
𝐸𝑈𝑗,𝑘

𝑈𝑗,𝑘
𝑊

𝑈𝑗,𝑘
𝑁

𝑈𝑗,𝑘
𝑆

𝑈𝑗,𝑘
𝐸

𝑈𝑗,𝑘+1
𝑈𝑗,𝑘+1

𝑊

𝑈𝑗,𝑘+1
𝑁

𝑈𝑗,𝑘+1
𝑆

𝑈𝑗,𝑘+1
𝐸

Thread(j,k)

Thread(j,k+1)

Thread(j+1,k)

Thread(j+1,k+1)

Roadmap of the

GPU implementation

− Single call to cudaMalloc(…) to allocate a huge linear block of memory. The

needed part is then accessed by the offsets.

− Extensive use of the shared memory: neighboring cells propagate their

“boundary conditions” between each other through the CUDA shared

memory

− No intermediate transfers to the host: all computations are done on the

GPU-side

− The grid is horizontally divided between all available GPUs. Pinned memory

is used for data exchange to minimize the I/O workload (albeit, this part

needs more testing)

− The serial part of the code is reduced to data initialization, hence the impact

of the Amdahl’s law is minimal → the code scales very good with growth of

the spatial resolution (one can run up to 3 000 000 dimensional shallow

water in very this laptop!)

− Under certain conditions we were able to reach 100x performance boost

over CPU-hosted implementation based on intel MKL routines

Conclusion

− Presented an algorithm based on Kalman filter approximation, which is able

to preserve stability when applied to large-scale dynamics

− A further improvement for the approach based on parallelization is

introduced

− Both concepts are tested with a toy-case chaotic model, which can be made

fairly large-scale by increasing spatial discretization

− A new test model, which can be run at a very high resolution on widely

available hardware is implemented (thanks to CUDA!)

Thank you for attention!

