

Picture: Stan Tomov, ICL, University of Tennessee, Knoxville

ECMWF Scalability Programme

Peter Bauer

Willem Deconinck, Mike Hawkins, Kristian Mogensen, George Mozdzynski, Tiago Quintino, Deborah Salmond, Yannick Trémolet, Nils Wedi

HPC Workshop

PB 10/2014

© ECMWF

Scenario 2020+: Compute and Archive

Compute (communication):

- model time step of 30 seconds
- 10 day forecast
- model on 4,000,000 cores
- max. 1 hour wall clock
- 1 step needs to run in under 0.125 seconds
- by using 32 threads per task with 128,000 MPI tasks:
 - a simple MPI_SEND from 1 task to all other 128k tasks will take an estimated 128k x 1 μsec = 0.128 seconds

→ Global communications (+ memory limitations)?

Archive*:

- EC-Earth at 25km with 10 years/day on 10,000 cores
- 25 member ensemble x 4 for e.g. calibration:
 - 1,000,000 core experiment
 - 25-year run over 2.5 days produces 60,000,000 core hours
 - 250 Gbyte per compute month per member
 - 6 Pbyte per day = 0.5 Tbit per second

→ Data I/O rates, reliable management on disks for post-processing and dissemination?

(*Example courtesy Bryan Lawrence U Reading)

HPC Workshop

Scenario 2015: Compute

ECMWF production workflow

Data assimilation (obs. pre-processing):

- **12h EDA**: 25 members, 2 outer loops, inner loops w/ iterations, 6h integrations, low resolution
- **6/12h 4DVAR**: 3 outer loops, inner loops w/ iterations, 6/12h integrations, high/low resolution, wave coupling
- Observation DB incl. feedback, ML and PL output

Model integration:

- **10d HRES**: 10d integrations, high resolution (radiation low resolution), wave coupling
- ML and PL output
- 10d/32d ENS: 10d/32d integrations, lower resolution (radiation low resolution), oceanwave coupling,
- (2 t-steps ML and) PL output

Data processing/archiving/dissemination:

- Data management
- Dissemination via RMDCN

Issues:

Sequential algorithms/data access, non-local communication, memory limits, load imbalance, redundant file access, coupling barriers etc.

Scalability of computing: The good ...

T2047L137 (10 km)

RAPS12 (CY37R3, on HECToR), RAPS13 (CY38R2, on TITAN)

Scalability of computing: ... and the ugly

HPC Workshop

Runtime (sec)

Power: Simplified

- \rightarrow 100 days/day require 84,000 cores = 2 MW
- \rightarrow 240 days/day require 280,000 cores = 6-7 MW
- → x 10 = 60-70 MW?

(scaling from HRES to full HPC incl. other suites, RD experimentation, MS quota)

Scalability Programme: Objectives

New capabilities :

- An integrated forecasting system (IFS) combining a flexible framework for scientific choices to be made with maximum achievable parallelism.
- Portable code structures ensuring efficiency and code readability exploiting a range of expected future technologies.
- Metrics and framework for code testing allowing quantitative assessment of scalability.

... given operational schedule constraint

Success metrics:

efficiency gains in Watts/FLOP or Watts
efficiency gains in Gbyte/s and Pbyte

→ The Scalability Programme provides science **support**!

Scalability Programme: Structure

Board:

Chair: Florence Rabier (FD), Members: Erland Källén (RD), Adrian Wander (CD), Sinead McAtavie (AD), Andy Brown (Met Office), Alain Joly (Météo-France), Jeannette Onvlee (KNMI), Piet Termonia (RMI)

Scalability & Science example #1: PolyMitos & PantaRhei

PolyMitos

- ATLAS data structure framework
- Unstructured mesh / structured grid support
- Compact stencil space discretisation
- Nearest neighbour communication

... multiple grids, I/O, spectral transforms

PantaRhei

- Research on equations:
 - fully compressible
- Conservative, monotone transport
- 3D Helmholtz solver, pre-conditioning

 … hybridization with IFS, physicsdynamics

Scalability & Science example #1: PolyMitos & Model

PolyMitos

- ATLAS data structure framework
- Unstructured mesh / structured grid support
- Compact stencil space discretisation
- Nearest neighbour communication

... multiple grids, I/O, spectral transforms

Model physics

- New prognostic variables:
 - Aerosols
 - Trace gases
 - Higher-moment cloud schemes
- High-resolution radiation calculations

... also with accelerators (CAS, OAFS)

© ECMWF

HPC Workshop

Scalability & Science example #2: OOPS & 4D-Var

OOPS

- Object-oriented design and call structure
- Top-level control level with abstract building blocks
- Classes can be flexibly assembled

• ... use of PolyMitos data structures, coupled data assimilation

(Hybrid) 4D-Var

- Model error formulation
- Saddle-point algorithm
- Hybrid ensemble variational formulation

… long-window 4D-Var, EnKF, coupled data assimilation

HPC Workshop

PB 10/2014

© ECMWF

Scalability & Science example #2: ENS & HERMES

ENS

- High-resolution output on model levels
- On-the fly diagnostics of information content
- Reduction of degrees of freedom

HERMES

- On-the-fly task configuration
- Parallelised post-processing
- Archiving away from single parameter global field, high-level pdf information

• ... advanced ensemble products

 ... possible restart configurations for enhancing resilience

Scalability Programme: Expected Outcome

Analysis (data assimilation)

- C++ layer, control structure
- Object oriented call of building blocks (model, operators, error stats, coupling)
- Full *flexibility* with respect to algorithms (variational, ensemble)
- Scalability through parallelisation in time

Forecast (model, ensembles)

- Data structures allowing any localization (→ assimilation/data management)
- Full *flexibility* with respect to equations, solvers, coupling
- Full *flexibility* with respect to meshes/grids (\rightarrow assimilation/data management)

Pre-/post-processing

- Front-end data analysis to define workflow and tasks (delegation)
- Streaming interface to pipeline I/O between tasks
- Back-end data processing for different hardware options

Hardware support/code adaptation

- Benchmarking simulators (compute, data)
- Specialist DSL libraries (numerics, physics, math, solvers etc.)
- Interface with vendors (compilers, standards), portability

Model evolution with Scalability Programme

Model evolution <u>without</u> Scalability Programme

