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ITC GEO Soil Moisture Soil Temperature Networks



Tibetan Plateau observatory of plateau scale soil 
moisture and soil temperature (Tibet-Obs) 

(Su, Z., et al. 2011, HESS)

ESA Dragon programme

EU FP7 CEOP-AEGIS project



Maqu Station: Field Site and Experiment
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Maqu: Soil moisture at 5 cm depth

Organic soils

Sandy loam soil



Quantification of uncertainties in global products
(Su, et al., 2011, HESS)



The Tiled ECMWF Scheme for Surface Exchanges over Land 
(TESSEL) & the HTESSEL (Hydrology TESSEL)

(a) TESSEL land-surface scheme, (b) spatial structure in HTESSEL 
(for a given precipitation P1 = P2 the scheme distributes the water as surface 

runoff and drainage with functional dependencies on orography and soil texture 

respectively) (Balsamo et al., 2006)



How good is soil temperature simulation/analysis?
(Su & de Rosnay, et al. 2013, JGR)



How good is soil moisture analysis/assimilation? 
(Su & de Rosnay, et al. 2013, JGR)



How good is soil moisture assimilation? 

Soil moisture from the ECMWF-EKF-ASCAT 2 run (using the EKF soil 

moisture analysis with ASCAT data assimilation)

(Su & de Rosnay, et al. 2013, JGR)



Noah LSM
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Noah LSM provides a complete description of the physical 
processes with a limited number of parameters. 

 Soil water flow;

 Soil heat flow;

 Heat exchange with the atmosphere;

(Zheng et al., 2013, JHM; Zheng 2014a,b in review.)

 Snow pack.

(Malik et al., 2012, JHM; 

JGR, 2013; RSE, 2011)

 Frozen soil;  ???

(NWO SMAP project)

N: National Centers for Environmental Prediction (NCEP)

O: Oregon State University (Dept of Atmospheric Sciences)

A: Air Force (both AFWA and AFRL - formerly AFGL, PL)

H: Hydrologic Research Lab - NWS (now Office of Hydrologic Dev -- OHD)



i) Impact of organic matter considered on the soil water retention curve via the 

additivity hypothesis, 

ii) Saturated hydraulic conductivity (Ks) implemented as an exponentially decaying 

function with soil depth, 

iii) Vertical root distribution modified to better represent the Tibetan alpine grassland 

conditions (abundance of roots in the top soil layer). 

(Diffusivity form of Richards’s equation revised to allow the simulation of the soil water 

flow across soil layers with different hydraulic properties).

Three numerical experiments: 

• Ctrl: a Noah control run with default model structure, 

• EXP1: a Noah run with modified soil hydraulic parameterization, 

• EXP2: a Noah run with modified soil hydraulic parameterization and 

vertical root distribution. 

AUGMENTATIONS TO NOAH SOIL WATER FLOW 

MODEL PHYSICS



Augmentations to Noah soil water flow model physics
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(Zheng et al., 2014a, JHM)

 Ctrl underestimates the of top layer soil moisture under wet conditions, 

overestimates it during dry-down episodes, and systematically 

underestimates it in the deeper soil layers.

 EXP1 resolves the soil moisture underestimation in the upper soil layer 

under wet conditions, but the overestimation during dry-downs remains. 

 EXP2 captures the soil moisture dynamics of the upper layer under dry 

conditions and improves the simulations of the deeper layers.

 Ctrl:   Default Noah LSM

 EXP1: Default + SOC scheme

 EXP2: Default + SOC + Root



Four numerical experiments: 

Ctrl:   a Noah control run with default model structure, 

•EXP1: a Noah run after removing vegetation muting effect,

EXP2: a Noah run with βveg as function of the LAI and GVF,

EXP3: a Noah run Zilitinkevich’s coefficient, Czil, parameterized as an 

indirect function of canopy height via z0m, 

AUGMENTATIONS TO NOAH TURBULENT HEAT FLUX 

AND SOIL HEAT TRANSPORT MODEL PHYSICS



Results: Heat Flux Simulation with Noah
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 Numerical Experiments

Ctrl:    Default Noah LSM

EXP1: Default + kh

EXP2: Default + kh + βveg

EXP3: Default + kh + βveg + z0h



Improvement in Nighttime Surface and Soil Temperatures
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Surface energy budget calculations by 
physically based LSMs can only be 

ameliorated if the water budget is well 
treated.



Tor Vergata Model – Simultaneous Modeling 
of Active And Passive Microwave Signatures 

 To use a single discrete scattering model to simulate both emission and 

backscattering, with a unique set of input parameters

 To combine the use of active and passive microwave satellite signatures 

to constrain the model

 To improve the modelling and understanding of microwave emissivity and 

backscattering coefficient over grassland with litter

 To contribute to an optimal use of SMAP-like data

 To improve the soil moisture retrieval

University of Rome “Tor Vergata”

L. Dente, P. Ferrazzoli, Z. Su, R. van de Velde, L. Guerriero, 2014, 
Combined use of active and passive microwave satellite data to 
constrain a discrete scattering model, RSE.



RESULTS: MODEL CALIBRATION (2009) – ACTIVE CASE

R2 = 0.9

rmse = 0.5 dB

bias = 0.2 dB

R2 = 0.9

rmse = 0.5 dB

bias = -0.04 dB



RESULTS: MODEL CALIBRATION (2009) – PASSIVE CASE

R2 = 0.8

rmse = 6.3 K

bias = 2.7 K

R2 = 0.5

rmse = 5.9 K

bias = 4.3 K

Surface temperature derived from V pol Ka-band AMSR-E Tb



IF ONLY THE ACTIVE MICROWAVE DATA WERE USED 
…

TVG smooth surface and no litter

TVG smooth surface and no litter

… a good match with ASCAT observations was possible 
with unrealistic assumptions:
-absence of litter
-smooth surface

However, the same assumptions led to a large 
underestimation of Tb!



RESULTS: MODEL VALIDATION (2010) – ACTIVE CASE

R2 = 0.8

rmse = 1 dB

bias = 0.6 dB

R2 = 0.8

rmse = 0.8 dB

bias = 0.3 dB



RESULTS: MODEL VALIDATION (2010) – PASSIVE CASE

R2 = 0.5

rmse = 8.7 K

bias = 1.3 K

R2 = 0.5

rmse = 5.0 K

bias = 3.4 K



R2 = 0.8

rmse = 8.2 K

bias = 5.1 K

WHAT IF SURFACE TEMPERATURE IS NOT SIMULTANEOUSLY 
OBSERVED

R2 = 0.8

rmse = 9.7 K

bias = -7.8 K

R2 = 0.7

rmse = 6.2 K

bias = -1.7 K

… when a different surface temperature is used.

R2 = 0.8

rmse = 6.3 K

bias = 2.7 K



An Improved Two-layer Algorithm for Estimating 
Effective Soil Temperature using L-band Radiometry
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The weight function C is a parameter affected by wavelength (a), 
soil moisture (b), sampling depth (c), and soil temperature (d)

(Lv et al., 2014, RSE)



Can we infer what is below the surface?
Numerical Analysis of Air-Water-Heat Flow in the 

Unsaturated Soil: the role of Air Flow in Land 
Surface Models?

a Two-phase Heat and Mass Transfer 
Model (STEMMUS)

Zeng, Y., Su Z., Wan, L. and Wen, J., 2011, Numerical Analysis of Air-Water-

Heat Flow in the Unsaturated Soil - Is it Necessary to Consider Air Flow in 

Land Surface Models. Journal of Geophysical Research – Atmosphere, 

116(20), D20107, doi: 10.1029/2011JD015835.

Zeng, Y., Su, Z., Wan, L. and Wen, J., 2011,  A simulation analysis of the 

advective effect on evaporation using a two-phase heat and mass flow 

model. Water Resources Research, 47(10), W10529, doi: 

10.1029/2011WR010701.



A two-phase numerical model: governing equations (Zeng et al., 2011)

Soil Moisture Equation

Dry Air Equation

Energy Equation

Transport Coefficient for 

Adsorbed Liquid Flow due to

Temperature Gradient

Differential Heat of Wetting

(Zeng et al., 2011)



Ponding Water

Infiltration 
Retarded

Closed Bottom

STEMMUS: Ponding water exp.

Ponding Water

Open Bottom

No 
Retardation

(Zeng, Su, et al. 2011, JGR)



Very dry Soil

VV  

Release heat

Adsorb Heat

STEMMUS: Soil Moisture and Heat Flow Exp.

(Zeng, Su, et al.  JGR, 2011) 



What causes the high PBL on Tibetan Plateau?

(Chen et al., 2013, PLOSone)



ITC SEBS DERIVED GLOBAL ENERGY & ET FLUXES

(2000 to present at 5 km*5 km spatial resolution), data access: 

linkendin SEBS group

(Chen et al., 2014, ACP)
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From ‘THE SWENSON CODE

A Land Surface Modeling Thriller

by R. Koster’

Is this why the bus stop is called the "Weather Centre" ?

Thank you very much!


