<u>M.-H. Ramos (1)</u>, I. Zalachori (1), R. Garçon (2), J. Gaillard (2), M. Lelay (2)

(1) IRSTEA, Hydrology Group, UR HBAN, Antony, France.

(2) EDF-DTG, Electricité de France, Division Technique Générale, Grenoble, France

H-SAF & HEPEX Workshop – Reading – Nov. 3-7, 2014

- Reservoir management concerns...
 - I. operational hydrologists interested in forecasting hazardous events like floods for early warning and reservoir operation (safety & security)
 - II. planners searching to optimize the management of water resources systems (uses & conflicts) and to plan system's evolution at different space-time scales (basin/national/regional planning)

Loire River @ Grangent November 2008 Photo: EDF

- Objective
 - to investigate the benefits of using hydrological ensemble predictions for reservoir inflow management in terms of potential gain to hydropower production

Photo: ENPC

Durance River @ Serre Ponçon May 2008 Photo: EDF

- Data & methods
 - ECMWF EPS as input to MORDOR hydrological model
 - Daily ensemble streamflow forecasts up to 7 days ahead
 - Heuristic model for reservoir operation
 - Hourly EU market energy prices (EPEX SPOT)

- Modelling of the power systems
 - Hydrological inflows: predictions over French catchments
 - Reservoirs: units of power production described by
 - Storage capacity coefficient (Smax, Smin): in days of mean daily flow of the catchment
 - Turbine capacity coefficient (Tmax): maximum flow capacity (also related to the mean daily flow of the catchment)

Results: illustration for one day of single forecast (1/3)

• Sep 5th 2008: Predicted inflow to the Durance reservoir for the next 7 days

Results: illustration for one day of single forecast (1/3)

 Sep 5th 2008: Predicted inflow to the Durance reservoir for the next 7 days

- Energy prices for the week
- Turbine capacity = 3 * mean daily flow of the catchment

Results: illustration for one day of single forecast (1/3)

- Sep 5th 2008: Predicted inflow to the Durance reservoir for the next 7 days
- Energy prices for the week
- Turbine capacity = 3 * mean daily flow
- Reservoir capacity = 4 days of mean daily flow

Results: illustration for one day of single forecast (2/3)

- Sep 5th 2008: Predicted inflow to the Durance reservoir for the next 7 days
- Energy prices for the week
- Turbine capacity = 3 * mean daily flow
- Reservoir capacity = 4 days of mean daily flow

Results: illustration for one day of single forecast (3/3)

- Sep 5th 2008: Predicted inflow to the Durance reservoir for the next 7 days
- Energy prices for the week
- Turbine capacity = 3 * mean daily flow
- Reservoir capacity = 4 days of mean daily flow

• Run the observed flows through the management rule (24h)

Results: sensitivity to system's characteristics

Forecasts: Ensemble forecasts (2005 - 2008)

Results: over a 4-year period

• Different types of forecasts:

ste

Turbine capacity (4* mean daily flow)

Reservoir capacity in days of mean daily flow

- Summary
 - An adaptable tool: heuristic algorithm connected with simulation model for reservoir rules under constraints
 - Different inflow scenarios
 - Different characteristics of reservoir & power system
 - The relative economic gains of using hydrometeorological ensemble forecasts comparatively to no forecasts at all (i.e., only climatological information) can potentially result in an average gain of 5% (over hundreds of M€).
 - Further studies
 - Improve the use of the probabilistic information from ensembles,
 - Impact of post-processing on energy production (quality \installed usefulness)

<u>M.-H. Ramos</u>*, I. Zalachori, R. Garçon, J. Gaillard, M. Lelay

* IRSTEA, Antony, France. maria-helena.ramos@irstea.fr

