

H-SAF 3rd Open Workshop Reading, 3-6 November 2014

H-SAF introduction to HEPEX

Flavio Gattari H-SAF Project Management

H-SAF Objectives

- To generate, disseminate, archive and guarantee operational provision of high quality precipitation, soil moisture and snow products for operational hydrological applications derived from Earth observation satellites in geostationary and polar orbits operated both by EUMETSAT other satellite organizations.
- To perform a continuous and independent quality monitoring and assessment of the products for hydrological applications.

The Consortium and Partners

AUSTRIA

ECMWF

USAM-CNMCA PROTEZIONE CIVILE CNR -ISAC UNIFE **TELESPAZIO**

ZENTRAL ANSTALT FUR

METEOROLOGIE UN

GEODYNAMIC

WIEN

Telespazio A Finmeccanica/Thales Company

ROYAL

INSTITUTE

HYDROLOGY

METEO-FRANCE

METEOROLOGICAL

NATIONAL INSTITUTE

OF METEOROLOGY AND

GERMANY

BELGIUM

BULGARIA

FRANCE

BUNDESANSTALT FUR **GEWASSERKUNDE**

bfg

HUNGARY

HUNGARIAN METEO SERVICE

SLOVAKIA

HYDRO-METEOROLOGICAL INSTITUTE

TU WIEN EUROPEAN CENTRE FOF MEDIUM-RANGE

WEATHER FORECASTS

FINNISH **FINLAND METEOROLOGICAL** INSTITUTE

INSTITUTE OF METEOROLOGY POLAND AND WATER MANAGEMENT

TURKISH STATE METEOROLOGICAL SERVICE **TURKEY** MIDDLE EAST TECH. UNIV. **ISTANBUL TECH. UNIV. ANADOLU UNIVERSITY ONDOKUZ MAYIS UNIV.**

The Context: The SAF Concept

The Context: The SAF Schedule

The Context: The SAF Network

HSAF

Support to Operational Hydrology and Water

H-SAF Architecture

Product Generation Centers

H-SAF Architecture

H-SAF Central Services

H-SAF Architecture

Validation Centers

H-SAF Operational Products

Precipitation Products

H01 PR-OBS-1	Precipitation rate at ground by MW conical scanners	Operational
H02A PR-OBS-2A	Precipitation rate at ground by MW cross-track scanners	Operational
H03A PR-OBS-3A	Precipitation rate at ground by GEO/IR supported by LEO/MW	Pre- operational
H04A PR-OBS-4A	Precipitation rate at ground by LEO/MW supported by GEO/IR	Pre- operational
H05A PR-OBS-5A	Accumulated precipitation at ground by blended MW and IR	Pre- operational

PR-OBS1 / H01 Precipitation from Microwave Conical scan satellite (SSMI/S)

PR-OBS2 / H02 Precipitation from Microwave Cross scan satellite (AMSU/MHS)

H-SAF 3rd Open Workshop – Reading , 3-6/11/2014

EUMETSAT H-SAF PR-OBS-2 Instantaneous Rain Rate from Crosstrack MW Scan

PR-OBS3 / H03 Multi-platform algorithm: BLENDING

ISAF

Support to Operational Hydrology and Water Management

Technique

The "Rapid Update" tecnique allows to compute instantaneous rain intensities at the ground at the geostationary time-space scale (Turk et al. 2000, Torricella et al. 2007).

It is based on a blended MW-IR technique that correlates, by means of the statistical probability matching, brightness temperatures measured by the IR geostationary sensors and PMW-estimated precipitation rates at the ground.

EUMETSAT H-SAF PR-OBS-3 Instantaneous Rain Rate retrieved from IR-MW blending data

HSAF

Support to Operational Hydrology and Water Management

Blending of: SEVIRI IR + SSM/I-SSMIS MW + AMSU MW. Instantaneous Rain Rate (mm/h): 20130619 0627

H03 Case study: 19 June 2013 Germany

PR-OBS4 / H04 Multi-platform algorithm: MORPHING

Technique

Propagation vector matrices are produced by computing spatial lag correlations over successive images of GEO/IR and then used to propagate the MW-derived precipitation estimates in time and space when updated MW data are unavailable (OFFLINE PRODUCT)

H-SAF 3rd Open Workshop – Reading , 3-6/11/2014

ISAF

Support to Operational Hydrology and Water Management

H-SAF Operational Products

Soil Moisture Products

H08 SM-DIS-1	Small-scale surface soil moisture by radar scatterometer [1 km, ASCAT/SAR]	Pre- Operational
H14 PR-OBS-2	Soil Moisture Profile Index in the roots region retrieved by surface wetness scatterometer assimilation method	Operational

SM-DIS-1 / H08

Small-scale surface soil moisture by radar scatterometer [1 km, ASCAT/SAR]

HSAF 1km soil moisture: 20141102_102400

SM-DAS-2 / H14 Soil Moisture Profile Index in the roots region retrieved by surface wetness scatterometer assimilation method

H-SAF Operational Products

Snow Products

H10 PR-OBS-1	Snow detection (snow mask) by VIS/IR radiometry	Operational
H11 PR-OBS-2	Snow status (dry/wet) by MW radiometry	Pre- Operational
H12 PR-OBS-3	Effective snow cover by VIS/IR radiometry	Operational
H13 PR-OBS-4	Snow water equivalent by MW radiometry	Pre- Operational

SN-OBS-1 / H10 Snow detection (snow mask) by VIS/IR

SN-OBS-2 / H11 Snow status (dry/wet) by MW

SN-OBS-3 / H12 Effective snow cover by VIS/IR

SN-OBS-4 / H13 Snow water equivalent by MW

Enlargement to Full Disc

H02B PR-OBS-2B	Precipitation rate at ground by MW cross-track scanners	Algorithms to
H03B PR-OBS-3B	Precipitation rate at ground by GEO/IR supported by LEO/MW	be assessed by end 2014
H04B PR-OBS-4B	Precipitation rate at ground by LEO/MW supported by GEO/IR	Expected Operations in
H05B PR-OBS-5B	Accumulated precipitation at ground by blended MW and IR	2016

New Precipitation Products

H15	Blended SEVIRI Convection area / LEO MW Convective Precipitation	
H17	Precipitation rate at ground by MW conical scanners (GCOM-W1 AMSR2)	Algorithms
H18	Precipitation rate at ground by MW cross-track scanners (Suomi NPP ATMS)	assessment expected in 2015
H19	Rainfall intensity from GMI (GPM- Microwave Imager)	
H20	Rainfall intensity from GMI (GPM - Microwave Imager) [Neural Network] algorithm]	Expected Operations in 2016
H21	High frequency MW delineation of cloud areas with new development of hydrometeors (MHS)	11 2010
H22	Snowfall intensity (MHS)	

MTG-based Products

H40 PR-OBS-3 -FCI	Precipitation rate at ground by GEO/IR supported by LEO/MW and MTG FCI	Algorithms
H41 PR-OBS-4-FCI	Precipitation rate at ground by LEO/MW supported by GEO/IR (with flag for phase) and MTG FCI	assessment expected in 2016
H42 PR-OBS-5-FCI	Accumulated precipitation at ground by blended MW and IR and MTG FCI	Expected
H50 PR-OBS-11	Rainfall intensity from MTG LI	Operations in CDOP3
H43 SN-OBS-0G-FCI	Snow detection (snow mask) by VIS/NIR of MTG FCI	(next phase)

Soil Moisture: Large Scale improvement and Time Series

H16 SM-OBS-3	Large-scale surface soil moisture by radar scatterometer (25 km, ASCAT)	Expected operations in 2015
H02 PR-OBS-2	ASCAT Large-scale surface soil moisture (25 Km) - Time Series	Released as Demonstrational
H03 PR-OBS-3	Soil Wetness Index in the roots region by scatterometer assimilation in a NWP model - Time Series	Expected release in 2016

Quality Monitoring and Hydrovalidation Programmes

- Quality Monitoring Programme provides a continuous assessment of the products quality and performances by evaluating statistical scores and case study analysis on the base of comparison between satellite products and ground data;
- Hydrovalidation Programme provides the impact with hydrological applications by interfacing with hydrological models, performed both through near real time and off-line impact studies

Quality Monitoring Programme

Data Sources

Raingauges

The Raingauge Network

			0 0
	25°N	Instrument characteristics	Telemetric and mechanic
		Time domain (near real time/ case studies)	Near real time, case studies
N-		Time resolution (15 min, 30 min)	10 – 30 min (telemetric), 3 – 24 h (mechanic)
Σ _φ -		Spatial distribution (whole national territory/ limited area)	
	Solo Solo		~390 mechanic (RMI) + 12 telemetric (RMI) + 4160 telemetric (SETHY)
			Operational (RMI) + research (other networks)
4500 stations	20°E		Telemetric: automatically checked / mechanic: autom. + manually checked

The Radar Network

HSAF

Support to Operational Hydrology and Water Management

Data Sources	Radars
Instrument characteristics	Beam width ~1°, max range ~150 Km, 250m, C-band, single polarization, Doppler polarimetric
Time domain	Near real time/ case studies
Time resolution	5 min, 15 min, 30 min, 1h, 24h
Spatial distribution	Whole national territory
Number of station	40 C-band +1 Ka-band

Hydrovalidation Programme

Central Services - Archiving

H-SAF Products are **centrally collected** by NRT ingestion from peripherals to Central Site at CNMCA.

NRT availability requirement guaranteed to end users.

Products are maintained in two different storage areas:

- On-line archive: Latest 60 days of production constantly available (24 / 7). Immediate access to selected items, for registered users.
- Off-line archive : Entire production since the beginning of H-SAF operations. Items available through Order Management system, made available on demand in a FTP area for a limited temporal window

Central Services - Dissemination

Dissemination of products foresees use of both EUMETSAT Data Delivery Service (EUMETCast) and ftp dedicated server by H-SAF Central Facilities

Central Services – Operations Monitoring Tools

Automatic tools at Central Site continuously monitors: production, ingestion and dissemination Main functionalities of monitoring:

- Central Ingestion of products coming from distributed production centers
- Product chains status
- EUMETCast broadcasting status
- User registration
- Product performances

Alerting messages in case of anomalies.

User Services – Map Tool

The **Map Tool** is a web application that provides an easy to use tool - you only need a web browser and a good internet connection - to display a set of precipitation products (H03, H04 and H05) on a **georeferenced map**.

User Services – Map Tool

The **MAP Tool** is also an operational tool that allows users to monitor the current status of rainfall on the ground (H03, H04) or the status of the accumulated precipitation (H05), updating automatically the map with the last H-SAF product available.

User Services – Map Tool

The **MAP Tool** can be reached from the official website of HSAF hsaf.meteoam.it after registration.

The EUMETSAT Network of e Application Facilities Under Support to Op Hydrology and Management	erational I Water			login nev	w user password retrie
overview partners news	scientific papers project d	locuments contact us			
Download Products		Home Precipitation Soil	Moisture Snow Quality Mo	nitoring	
		PRECIPITA	TION		
PR-OBS-1 PR-OBS-2 PR-OBS-3	PR-0B5-4 PR-0B5-5 PR-J	ASS-1			
12-06-2012 06:42	12-06-2012 06:27	12-06-2012 06: 12	12-06-2012 05:57	12-06-2012 05:42	12-06-2012 C
		see as animated gif view	on Google Maps	view on Google N	Ларѕ

Thank you for your attention