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Summary conclusions

@ Postprocessing of temperature, precipitation forecasts improves skill

@ Quality improvement does not proportionally propagate to streamflow
forecasts

@ We believe this is due to:

» non-linearities in rainfall to runoff processes
> presence of storages
» inadequate space-time modelling using Schaake shuffle

@ These results are largely in line with those obtained in similar studies
(Zalachori et al., 2012; Kang et al., 2010)
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Introduction |

Setting the scene
@ hydrologic forecasting
@ ensemble prediction

@ reduction of predictive uncertainties
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Introduction I

Problem statement
o Numerical Weather Prediction products (NWP)

@ propagation of biases
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Introduction [l1

Statistical post-processing
@ often applied to streamflow forecasts directly
@ can be applied to NWP also (‘pre-processing’)

Research question

To which extent can biases (mean, spread) in streamflow forecasts be
addressed through post-processing of the forcing ensembles?

@ To what extent are the ‘raw’ forcing ensembles biased?
@ How do these biases propagate to streamflow ensembles?

© Can quality of ‘raw’ forcing ensembles be improved by
post-processing?

@ Does this quality improvement proportionally translate to streamflow
ensembles?
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Research design

)
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Bias-correction principles and techniques |

Temperature
@ quantile-to-quantile transform

@ linear Gaussian regression

Precipitation
@ quantile-to—quantile transform

o logistic regression (Hamill et al., 2008)
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Bias-correction principles and techniques Il

Principles of conditional techniques

@ Predictand Y = observed temperature, precipitation or streamflow.
Assumed unbiased!

@ Potential predictors X = {Xi,...,Xs,..., X;y}; biased.

@ The bias—corrected forecast:
F(ylxi,...,xm) =P[Y <y | Xi=x1,..., Xm = Xm| Vy

o for each lead—time and each location separately

o After bias-correction: “Schaake Shuffle” (Clark et al., 2004) to
maintain spatial and temporal patterns (“traces”)
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Bias-correction principles and techniques Il

Combinations of techniques used
@ Uncorrected temperature, precipitation ensemble forecasts (raw—raw)
@ Quantile-to-quantile transformed temperature, precipitation forecasts
(aqt—qaqt)
@ linear Gaussian regression (temperature) and logistic regression
(precipitation) (lin-log)
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Ensemble verification

Verification against simulations!
Skills shown are relative to sample climatology

Metrics expressed as function of P

Metrics shown here:

v

Relative Mean Error

» Brier's probability skill score

» Mean Continuous Ranked Probability skill Score
» Relative Operating Characteristic skill score

@ metrics computed using Ensemble Verification System (Brown et al.,
2010)
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Verification graphs
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Temperature
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Precipitation |
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Precipitation |l
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Precipitation Il
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Precipitation IV
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Precipitation V
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Streamflow |

Three spatial scales:
© Basin outlet at Lobith
@ Four main tributaries: Main, Moselle, Neckar, Swiss Rhein
© ~40 headwater basins




Streamflow I
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Streamflow IlI
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Streamflow IV
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Streamflow V
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Streamflow VI
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Streamflow VII
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Summary conclusions

@ Postprocessing of temperature, precipitation forecasts improves skill

@ Quality improvement does not proportionally propagate to streamflow
forecasts

@ We believe this is due to:

» non-linearities in rainfall to runoff processes
> presence of storages
» inadequate space-time modelling using Schaake shuffle

@ These results are largely in line with those obtained in similar studies
(Zalachori et al., 2012; Kang et al., 2010)
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The ECMWF temperature and precipitation ensemble reforecasts are evaluated for biases in the mean,
spread and forecast probabilities, and how these biases propagate to streamflow ensemble forecasts.
The forcing ensembles are subsequently post-processed to reduce bias and increase skill, and to investi-
gate whether this leads to improved streamflow ensemble forecasts. Multiple post-processing techniques
are used: quantile-to-quantile transform, linear regression with an assumption of bivariate normality and
logistic regression. Both the raw and post-processed ensembles are run through a hydrologic model of the
river Rhine to create streamflow ensembles. The results are compared using multiple verification metrics
and skill scores: relative mean error, Brier skill score and its decompositions, mean continuous ranked

ity skill score and its decomposition, and the ROC score. Verification of the streamflow ensembles
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