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Summary

. Assimilating satellite observations of one hydrological variable can
demonstrably improve analysis of that particular variable.

. However, due to the sometimes loose coupling between variables, those
benefits do not always propagate far (more so in land surface than
atmospheric models).

. Assimilating water balance observations can enhance hydrological
forecasting skill provided initial hydrological state contributes to
predictability.

. This is in addition to any forecast skill derived from climate system state
(used directly or via atmospheric model forecasts)

It is possible to predict the theoretical skill contributions from
hydrological and climate state, through model studies.

It is possible to predict the realised skill, by combining theoretical skill
with off-line model performance measured against observations.



Continental satellite soil moisture
data assimilation improves root-
zone moisture analysis for water
resources assessment

L.J. Renzullo, A.l.J.M. van Dijk, J.-M. Perraud, D.
Collins, B. Henderson, H. Jin, A.B. Smith, D.L.
Mclannet (2014)

Journal of Hydrology (pre-published, doi:
10.1016/j.jhydrol.2014.08.008)




Soil moisture is of interest in its own right

Soil moisture
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Australian Water Resources Assessment system Landscape (AWRA-L) model
CSIRO / Bureau of Meteorology
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Method

Perturbed meteorological forcing
AMSR-E

Descending ~1.30 am local time
pass only

ensemble Kalman filter

 AMSR-E and ASCAT-derived near- k& AAVeSrSgﬁ\Lescending ~9pm
. . & Fel, vi i
surface soil moisture { R ey r acending

AWRA-L model
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Evaluated against:

* in situ moisture measurements in
southeast Australia (OzNet)

* new network of cosmic ray moisture
probes (CosmOz)
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Error in
satellite
relative
wetness
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Evaluated against:

* in situ moisture measurements in
southeast Australia (OzNet)

* new network of cosmic ray moisture
probes (Cosm0z)
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Analysis

Increment
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Does the benefit propagate to
deeper layers?

Vertical coupling
S0 and Ss

Not really. Partly, that is a lag and
temporal averaging issue.
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Implications for temporal DA
scheme design?
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Nash-Sutcliffe Model Efficiency

Does assimilating satellite soil moisture (AMSR-E,
ASCAT) or satellite ET (CMRS-ET, SLST-ET) improve

daily streamflow estimates?
No — they are insufficiently strongly coupled.
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Some reasons why “absolute” soil moisture is irrelevant




A global water cycle reanalysis
(2003—2012) merging satellite
gravimetry and altimetry
observations with a hydrological
multi-model ensemble

A van Dijk, LJ Renzullo, Y Wada, P Tregoning (2014).
Hydrology and Earth System Sciences 18 (8), 2955-2973
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Main change terms in
global water budget

Trends in seasonal anomalies in sub-
surface water storage (posterior) Trend 2003-2012 (Gt/y, km3/y)

polar ice caps

mountain glaciers
seasonal snow pack

new impoundments

other surface water bodies

groundwater depletion

subsurface (temperate, monsoon) 110
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Impact of GRACE data
assimilation

Greatest adjustments:

* largerivers

* jce sheets

e glaciers

* seasonal tropics &

Typically, one water balance

term (i.e. the least RMS difference between prior and
constrained) ‘sucks up’ all the posterior storage time series.
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Impact of GRACE data
assimilation

Greatest adjustments:
* largerivers

ice sheets

glaciers

seasonal tropics Actual innovation

Typically, one water balance
term (i.e. the least
constrained) ‘sucks up’ all the
innovation.

Indicative of greatest model
deficiencies

RGB composites: "

soil & groundwater as a fraction of total innovation
snow & ice
rivers & lakes
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Summary

1. Assimilating satellite observations of one hydrological variable can
demonstrably improve analysis of that particular variable.

2. However, due to the sometimes loose coupling between variables, those
benefits do not always propagate far (more so in land surface than
atmospheric models).



Global analysis of seasonal streamflow
predictability using an ensemble
prediction system and observations
from 6192 small catchments worldwide

van Dijk, A. I. J. M., J. L. Pefla-Arancibia, E. F. Wood, J. Sheffield, and H. E. Beck (2013)
Water Resources Research 49, 2729-2746, doi:10.1002/wrcr.20251.
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Approach: conditional ESP

Predictor selection Forecast system Theoretical skill Actual skill
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Configuration

1.0

* Meteorological forcing: 1° daily, 1948-2008 (Sheffield et
al., 2006, J Clim 19): precipitation, incoming shortwave
radiation, max and min daily temperature

* Hydrological model W3RA v1: fairly simple model based
on

0.8 T

ST
LRI

AWRA vO0.5 (Van Dijk & Renzullo, 2011, HESS 15)

HBV-96 snow module (Lindstrom et al., 1997, J Hyd
201)

o inputs: forest cover, wind speed, albedo
: - GLDAS
climatologies ”

variance-weighted ranked R

] |

W3RA CLM Mosaic NOAH

0.0

* Climate indices (Nino3.4, SOI, 10D, PDO, PC-NAO, STR, S-NAO,EA, WP, EP/NP, PNA, EA/WR,
SCA, TNH, PL, PT, NP, SAM)
* (Re-)forecast configuration
o two-month total streamflow
o forecast date 1 Jan, Mar, May, Jul, Sep, Nov of years 1979-2008
o analogues sampled from preceding 30 years

April 1980 1 May 1980 31 Jun 1980
climate index  forecast date end forecast period
(initial state) 23



Distribution of stations

Streamflow data

X T "-",'
Source: GRDC, MOPEX, B rd
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Climate predictor selection
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Climate predictor selection

maximum gain in LEPS skill
< , ; ;h B
0.00

0.05 010 0145 0.20 025 030

Contribution of climate indices to theoretical skill, calculated as the difference
between LEPS skill with and without ensemble sampling based on climate
index, resp.

Does that mean we cannot forecast streamflow 2 months out for most of

the world?
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Theoretical streamflow forecast skill

Of course not.

It does mean that i B A , ..‘M

hydrological initial '

state (water ‘
storage) typically

contributes more w’
to skill than does

ESP conditioned by

climate index.

weighted average LEPS skill
] 1 ; >
0.7

0.0 0.1 0.2 03 0.4 0.5 06

Summary metrics of theoretical skill over the six
forecast periods calculated as mean LEPS weighted
by streamflow variance.
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Verification:
How much of the theoretical skill can we realise?
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Asia-Pacific Water Monitor
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Daily Streamflow Deciles
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Summary (rpt)

. Assimilating satellite observations of one hydrological variable can
demonstrably improve analysis of that particular variable.

. However, due to the sometimes loose coupling between variables, those
benefits do not always propagate far (more so in land surface than
atmospheric models).

. Assimilating water balance observations can enhance hydrological
forecasting skill provided initial hydrological state contributes to
predictability.

. This is in addition to any forecast skill derived from climate system state
(used directly or via atmospheric model forecasts)

It is possible to predict the theoretical skill contributions from
hydrological and climate state, through model studies.

It is possible to predict the realised skill, by combining theoretical skill
with off-line model performance measured against observations.



