Main WP4 tasks

- T4.1 Quality control, bias adjustment and homogenisation of input observations
- UNIVIE, ECMWF, UBERN, FFCUL
- Assess and improve the quality of input observations used for reanalysis.
 This includes quality control, bias adjustment and homogenization of observations.
- T4.2 Diagnostics and uncertainty assessments of reanalysis output
- UNIVIE, ECMWF, RIHMI, DWD, UVSQ
- Quality assessment of reanalysis products. Deliverables consist of Reanalysis Quality Assessment reports.
- Integration and expansion of diagnostic tools for estimating the uncertainty of new assimilation products. Assessment of the "climate quality" of the reanalysis products.

Main WP4 tasks

- ECMWF, ocean, carbon communities already have excellent monitoring tools - so where can we contribute?
 - Ensure that essential metadata are right this is assumed in ECMWF QC
 - Assess and adjust observation biases
 - Check fulfilment of budget constraints
 - Physical relationships as seen in different data sets
 - Help with intercomparisons of (reanalysis) data sets
- · Do existing diagnostics meet users' need?

Time varying biases as seen in background departures and budget evaluations

Leopold Haimberger, Marco Milan, Michael Mayer, Michael Blaschek, Lorenzo Ramella-Pralungo,

ERA-CLIM2 General Assembly, Nov 20th, 2014

Diagnostic tools

Diagnostic	State X	Observations Y	Predicted fluxes Fx	Observed fluxes Fy
Background departures	Y-H(X)	Y-H(X)	F_y -H[F_x (X)]	(F _y -H[F _x (X)])
Comparison of (input) obs.		Y_a -H (y_b)		(F _{yc} -H[F _{yd}])
State perturb.	AnInc(X)		Spinup(F _x)	
Tend+Fluxdiv+ Conversion=0?	X_{fc} , $F_x(X_{fc})$ X_{an} , $F_x(X_{an})$	Tend(y), Fluxdiv(y)	$F_x(X_{fc})$	F _y
Diagnostic relationships	X _c vs. X _d	y _c vs. y _d	$F_{xa}(X_{fc})$ vs. $F_{xa}(X_{fc})$	F _{yc} vs F _{yd}
Forecast skill	$fs[Y,H(X_{fc})],$ $fs(X_{fc},X_{an})$			$fs(F_{y,}H[F(X_{fc})])$
OS(S)Es	$X(y)$ vs $X(Y_b)$			$X(F_y)$ vs $X(F_{yb})$

... other, more specialized diagnostics for data assimilation

Departure time series of early radiosonde data

- Background $(y-Hx_b)$ and analysis $(y-Hx_b)$ departure statistics from pilot assimilations and reanalyses
- These series can be considered third level of QC after basic QC, internal consistency QC
- Credo: Departure statistics have high potential for QC/BC
- ERA-PreSAT background departures 1939-1967
- ERA-40/ERA-Interim background 1968-1978, 1979-2013
- Use also analysis departure statistics from
 - ERA-20C ensemble member 0 (rerun)
 - 20th Century Reanalyses v2 ensemble mean

Moscow obs-ERA-presat

Moscow obs - ERA20C, NOAA-20CR

US composite

Background departures,072202-072913, 00h

Background departures,072202-072913, 00h

T-Trends, 300hPa, 1949-1967

Unadjusted temperature

ERA-PreSAT bg

These data are easily retrieved from ECMWF odb2 Very strong cooling in obs over most of FSU, less so in bg Good agreement over Europe, US

T-Trends, 300hPa, 1949-1967

ERA-20C analysis

NOAA-20CR analysis

No sign of cooling over FSU at all in surface data only reanalyses!

RAOBCORE adjusted tempatures

Method does not detect trend-like bias changes ERA-presat bg also has cooling; Departures from surface data only reanalyses have large variance

Status of offline homogenization

- RAOBCORE/RICH adjustments available back to 1958
- RAOBCORE/RICH adjustments back to 1939
 - RAOBCORE results there depend on reference used, much better break detection with ERA-presat
 - RICH needs to avoid neighbours from same country more strictly
- Wind data adjustments: available back to 1920s, Ramella-Pralungo et al. 2014a,b,c
- · Humidity: just started
 - Calculate SSM radiances from RS profiles (using RTTOVs)
 - Analyse Humidity background departures

SSM-T2 brightness temperatures at single station

- RTTOVS 10 used for calculating BTs
- Potential for intercomparison back to early 1990s
- Comparison with GPS-RO?
- Background departures will be examined and interpreted with healthy scepticism

Flux diagnostics

- Relationships between fluxes, state variables
- Mean Analysis increments indicate flux imbalances in early forecast steps
- Variability of fluxes as interesting as variability of state
- Fluxes should fulfil budget constraints, e.g. for vertically integrated total energy

ERA-Presat Sea Ice and SST

Surface Flux and RadTOA, ERA-PreSAT

Analysis increment anomalies

Surface flux and sea ice extent

- Robust relationship between summer surface energy flux and September ice extent anomalies
- Indirect F_S estimate from satellite data and atmospheric budgets yields even clearer results

Radiation at TOA and sea ice extent

- Summer (JJA) Rad $_{TOA}$ clearly has strong impact on September sea ice extent
- Reanalysis has difficulties to show this, probably due to cloud biases

Do these results improve anything?

- · (Radiosonde) observation bias estimation
 - Offline:
 - Ready for wind (Ramella-Pralungo et al. 2014),
 - backward extension for Temperature to pre-1958 ongoing
 - Online: Bias model for VarBC of Radiosonde-T -> Marco Milan
 - Implemented by end of year but not sufficiently tested
- Budget diagnostics:
 - Need to be communicated early to have a chance of improvement within project
 - Valuable tool to discover physical relationships
- Need "canonical" set of diagnostics for comprehensive intercomparison of reanalysis, flux data

Conclusions

- Radiosonde T/wind bias estimation offline/online:
 - Deliverable due at end of year
 - Implemented but testing delayed
- Budget diagnostics:
 - Reveal problems but not necessarily a solution. Communication with "modelers" important
 - Emphasis on polar regions planned
- So far most work in WP4 in parallel, without much interaction except with ECMWF.

1960-1979 minus 1915-1935

E20C Analysis departures,047401-047963, 00h

Background departures, 27612, 55.75N, 37.57E, 00h

Japanese Radiosonde Composite

Background departures,047401-047963, 00h

Tropical trends 1958-2010

Temperature and wind 1950-1970

