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1 Introduction 
Seasonal prediction with numerical models is a challenging science on many levels. 
There are challenges to identify and understand the full range of processes that 
contribute to predictability, given the complexity of the physics, the non-linearity of 
the dynamics and especially the limited number of years that we can study 
observationally. There are challenges to initialize the various components of the 
climate system, especially given the general sparsity and non-stationarity of 
observational data. There are challenges to calibrate and interpret model output, again 
given a limited and non-stationary past, and to communicate information and its limits 
to a wide range of users without misleading or confusing. But the challenge I want to 
focus on here is the challenge of dealing with model error. 

Model error is a fairly general concept, and I would like to be a little more precise in 
what follows. By model error I mean problems, inadequacies and imperfections with 
the model formulation and its numerical implementation. Note that model error does 
not mean coding mistakes, although of course any such mistakes might contribute to 
model error. 

This model error causes integrations of the model to produce results which are 
unrealistic in various ways; e.g. the model climate (mean, variability, features) may be 
unrealistic. Often these unrealistic features are themselves referred to as model error; 
certainly it is common to talk of biases in model output as “systematic errors” of the 
model. This is a usage that I may slip into, since it is so common, but it is not the main 
focus of this presentation. 

The imperfections in the model also contribute to errors in any seasonal forecast 
produced by the model. This contribution I define here as the model forecast error. 
We do not know its value in any particular case, but may try to estimate its statistical 
properties. 

There are many examples of model errors and their effects, and of how once one aspect 
of a model’s performance is wrong, errors in other aspects become inevitable. 
Examples that we have faced over the years which are relevant to seasonal prediction 
include: a biased mean ocean state in the equatorial ocean, which then affects SST 
variability - if the model thermocline is depressed too far, than SST variability will be 
damped; an incorrect position of the boundary between cold tongue and warm pool in 
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the western equatorial Pacific, such that the processes driving local SST variations 
become totally incorrect; an incorrect distribution of mean precipitation, such that 
shifts in precipitation inevitably give wrong anomalies - and also, given that tropical 
precipitation is a major driver of the whole atmospheric circulation, incorrect 
precipitation implies that both the mean and anomalous atmospheric circulation is 
wrong. 

There are countless other model problems that could be described. Overall we believe 
that we have a broad spectrum of model errors. This means that when we improve a 
particular process in a model, the overall impact is almost as likely to be negative as 
positive. It is the fundamental reason why progress in reducing important categories of 
model error is very slow. For example, surface wind biases over the equatorial oceans 
are not really any better now than twenty years ago. To make matters worse, seasonal 
forecasts are highly sensitive to model errors. We are typically trying to calculate a 
relatively small shift in the centre of the probability distribution of an observed 
quantity; for temperature this might be a change of order of 0.5 deg C. If we integrate 
models forward in time for several months, it is easy to get much bigger errors than 
this. Of course, we use our standard bias correction technique to remove the effects of 
model bias to first order, but as just described, this is not enough - many model 
problems have strongly non-linear effects. In fact, model errors are believed to be the 
dominant cause of errors in the probabilities that we calculate with our seasonal 
forecasting systems. 

So, if model errors are dominant and also painfully slow to reduce, needing perhaps 
many more decades of progress to reduce to acceptable levels, how can we hope to 
improve the reliability of our seasonal predictions? 

2 The multi-model concept 
The basic concept of a multi-model approach to seasonal prediction is very simple. 
Different coupled GCMs have different model errors. There may also be quite some 
errors in common, which the multi-model approach will not address, as we discuss 
later. We take an ‘ensemble’ of model forecasts. The mean of the ensemble should be 
better, because at least some of the model forecast errors will be averaged out. The 
‘spread’ of the ensemble should also be better, since we are sampling some of the 
uncertainty. Thus by averaging over a number of imperfect models, we should get to a 
better forecast. 

To consider this in more detail, note that we are dealing with an ensemble of forecast 
values, not an ensemble of models. The importance of this distinction will become 
apparent later. 

Let us start by considering an “ideal” multi-model forecast system. We will assume a 
fairly large number of models (for example, 10 or more).  We assume that the models 
have roughly equal levels of forecast error. We assume at this point that the model 
forecast errors are uncorrelated. And we assume that each model has its own mean 
bias removed. 
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Consider the case of a specific forecast. A priori, we consider each of the models’ 
forecast pdfs equally likely, since they have equal levels of overall skill.  Note this is a 
Bayesian sense of “equally likely” – in reality, all the model pdfs will be wrong, since all 
the models are imperfect. 

A posteriori, this “equally likely” consideration is no longer valid: forecasts near the 
centre of the multi-model distribution have a higher likelihood. The situation is 
analogous to making repeated measurements of a length or mass: with a large number 
of measurements, the likely value of the measured quantity is known to be close to the 
centre of the distribution of measurements, and simple theory shows that the 
uncertainty is 𝜎/√𝑛, where σ is the standard error of the individual forecast model 
errors, and n the number of models averaged over.  

Note that this idealized multi-model ensemble is very different to the more common 
ensemble forecast where the initial conditions are perturbed to represent uncertainty 
in the initial conditions, and then an ensemble is run with a single model. In such a 
perturbed initial condition situation, and assuming either that the model is run far 
enough forward to “scramble” the initial conditions or that the distribution of initial 
conditions are chosen to be equally likely, then the forecast values are considered to be 
equally likely and the uncertainty in the forecast would be σ, not 𝜎/√𝑛.  

In practice, each model is run with a finite ensemble size, and so there will be some 
sampling uncertainty in the ensemble mean forecast of each model. We can take this 
into account, and then estimate the uncertainty in the multi-model ensemble mean, 
using a √𝑛 factor for the number of models. We can then estimate a p.d.f. by, for 
example, assuming that the observed outcome will be normally distributed about its 
true expected value with an uncertainty given by the width of the distribution seen in a 
single model forecast distribution. The method by which a multi-model ensemble 
forecast is constructed and used to estimate the impact of model error on forecast 
uncertainty means that, even in an ideal case, the multi-model ensemble distribution is 
a distribution, not a p.d.f. 

To move from this ideal case to a more realistic multi-model ensemble, we need to 
relax our assumptions and account for some other facts. Firstly, we cannot expect 
model forecast errors to be independent - we often see similar errors or features 
across a range of models. If we allow for the dependence of model forecast errors, this 
will reduce the degrees of freedom over which we sample, thus giving a smaller 
effective value of n, and increasing the uncertainty in our forecast. In some cases, the 
reduction in n could be drastic, and even a large number of models may only give a 
limited reduction in the errors in our forecast. Other assumptions (number of models, 
similarity of error statistics) are less fundamental, and can be addressed in theory by 
use of weighting and working to extend the ensemble. 

To return to the key point of this section: a multi-model forecast ensemble is not a 
p.d.f., even in ideal circumstances. A single model forecast ensemble is not a p.d.f. 
either, but could be expected to approach a p.d.f. in a perfect model scenario. The 
general situation is that forecast ensembles need to be interpreted appropriately to 
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give a forecast p.d.f. It is this p.d.f. which should then be verified using probabilistic 
forecast statistics. 

3 Multi-model results 
The efficacy of a multi-model approach to seasonal prediction was well demonstrated 
by the DEMETER project, an EU funded project run during the years 2000-2003. This 
looked at multi-model seasonal prediction using seven coupled general circulation 
models. Some benefits of a multi-model forecast were overwhelming, but perhaps not 
that surprising: Figure 1 shows the Brier Skill score (BSS) for a single model versus a 
multi-model combination as a scatter diagram, where each point is a comparison of the 
score for a given region, lead-time, start date and model, calculated over a 43 year 
period (see Hagedorn et al, 2005). In more than 99% of cases, the multi-model beats a 
single model. Despite this overwhelming advantage, the comparison is not fair - the 
multi-model has a bigger ensemble size than the individual model. Since in this study 
the forecast distribution is equated to the forecast p.d.f., small ensemble sizes are 
penalised significantly. 

 
Figure 1: A scatter diagram showing single versus multi-model Brier Skill Scores, for forecasts 
covering a 43 year period. Each point compares the score for a given region, start season, lead 
time, and single model/multi-model combination. The multi-model beats the single model almost 
every time. From Hagedorn et al., 2005. 

To enable fairer comparisons, one of the models was run using a large ensemble size, 
so single and multi-model forecasts could be compared with a constant ensemble size.  
This demonstrated that although ensemble size alone does help probabilistic skill 
scores, the multi-model combination gives a substantially larger benefit. A striking 
illustration is given in Figure 2, which shows the Rank Probability Skill Score for 
precipitation at grid points in the tropics. The blue lines shore scores for the ECMWF 
model, for increasing ensemble sizes from 9 (left) to 54 (right).  There are multiple 
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lines because there are multiple ways to select e.g. 3 groups of 9 from the 54 members 
available.  The coloured lines in the left column represent the scores from the 6 
different models, each with 9 ensemble members. Note that the ECWMF model (in 
blue) is the highest scoring model for this statistic. We are going to compare a multi-
model ensemble with a large ensemble of the highest scoring model! The second 
column shows, in red, the various possibilities for selecting two models from the 
available six. Several combinations beat the 18 member blue ensemble, although many 
combinations are still worse. With three models, the multi-model combination usually 
beats the best single model, and with four or more models it always does.  

 
Figure 2: RPSS for precipitation in the tropics, for various multi-model combinations (in red) 
compared to an equivalent sized single model ensemble (in blue). See text for details. From 
Hagedorn et al., 2005. 

4 EUROSIP 
I want now to discuss EUROSIP, the operational multi-model seasonal forecasting 
system at ECMWF. This was developed following the encouraging results from 
DEMETER and other research projects, which established the scientific benefits of 
combining forecasts from several models. The first partners in the project were 
ECMWF, the Met Office and Météo-France. The initial design of the multi-model system 
had a number of features: a co-ordinated forecast strategy, a comprehensive and 
common data archive, and the production of real-time forecast products, although 
some aspects of this have evolved over time due to changes by the partners. The 
EUROSIP system became operational in 2005. 

The data archive is an important part of the EUROSIP system. Individual model 
forecast data is archived in MARS, in a common data structure with the ECMWF 
seasonal forecasts. Both high frequency data (daily or more frequent) and monthly 
means are archived, although in recent years the Met Office have supplied only a 
limited number of monthly mean fields. The data is available to ECWMF Member States 
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for official duty use, and is also available for research and education, according to the 
terms of a data policy negotiated between the partners and ratified by ECMWF Council.  
This rich and common dataset is a valuable resource for many types of research, as 
well as supporting operational uses of real-time forecast data. ECMWF also creates, 
archives and disseminates multi-model data products, i.e. products derived by 
combining data from the different models. EUROSIP also provides support to the 
international community, for example by providing WMO access to the multi-model 
web products and supplying data to the EUROBRISA project in Brazil.  

The most recent change to EUROSIP has been the entry of NCEP as associate partners 
in the EUROSIP project. Data from CFSv2 has been integrated into EUROSIP to give a 
four-member multi-model seasonal forecast system. This involved a number of 
significant technical changes to the system, allowing the CFSv2 data to be processed 
and archived as data with daily starts, and then combined into a “lagged average” 
forecast, as opposed to the existing EUROSIP models which are all archived as an 
ensemble starting from the 1st of each month (even if they originate from a lagged 
average forecast). There were also some scientific challenges, due to the well 
documented non-stationary SST biases in NCEP. This was dealt with by defining a 
stable sub-period of the available re-forecasts, and only using re-forecasts from this 
period (1999 onwards) to calibrate the real-time ENSO forecasts from CFSv2. Because 
both CFSv2 and the Met Office model have very restricted and only partially 
overlapping ENSO re-forecast periods, the multi-model system was further generalized 
to allow forecasts/re-forecasts to be produced when one of the input models is not 
available. This allows re-forecast statistics to be calculated over a fuller period, and 
prevents missing data from a single model crippling the calculation of statistics from 
the multi-model system. 

Motivated by the introduction of variance scaling in ECMWF system 4, a slightly 
modified version of variance scaling was introduced into the EUROSIP system, for 
calculating El Nino SST plumes. Seasonal forecast systems are always corrected for 
model mean error or bias, estimated from the set of re-forecasts. However, models 
sometimes suffer from errors in variance as well as errors in the mean. This is 
especially true for SST variability in the equatorial oceans, where errors in the mean 
state of the coupled system easily result in SST anomalies being either systematically 
too small or systematically too big. It is straightforward to calculate the model SST 
variance over the re-forecast set, as a function of lead time and start date, and compare 
it with the corresponding observed SST variance. This gives a multiplicative scaling 
which can then be applied to the real-time forecast model SST anomalies. In practice, 
this approach has some problems, because of sampling. Although the mean bias is 
rather well sampled by O(20) years or more of re-forecasts, the variance is less certain. 
Cross-validated estimates are used when estimating skill for past cases, and these can 
be quite noisy depending which years are in or out of sample. In the past this has led to 
a conservative approach at ECMWF, only applying scaling in systems where the 
variance error was so large that it was obviously needed. In the revised EUROSIP 
system, we now apply variance scaling to all the models, but with some modifications 
to limit the possible impact of sampling effects. Firstly, the maximum scaling is limited 
to 1.4 - i.e. the model variance cannot be increased to more than 40% above its initial 
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level. Secondly, there is a gradual reduction of scaling greater than one applied in the 
case where the forecast value is much bigger than anything seen in the re-forecast set.  
The argument here is that we cannot be sure that variance errors are linear (in fact, we 
know that in many cases they are not), and that if our model is now in a physically 
different regime to the one used for estimating the variance scaling, we can no longer 
trust that scaling. If we are cannot trust the scaling, it would be dangerous to apply a 
large positive scaling to an already unprecedentedly large anomaly. 

This modified approach to variance scaling seems to be successful and robust in 
handling output from a range of models. With full cross-validation, we find that the 
variance scaling improves the forecast statistics of every individual model; improves 
the consistency between the models; and improves the multi-model mean. Fig. 3 shows 
the improvement in Nino3.4 SST forecast skill from adding CFSv2 as an additional 
model (left), and from adding the model and revising the processing (right panel). The 
new EUROSIP system with NCEP is now much improved, but most of the improvement 
in fact comes from the revised processing. 

  
Figure 3: Nino 3.4 SST r.m.s. error reduction  in EUROSIP, as measured using cross-validation over 
the longest available common period. Left panel: the improvement from including the CFSv2 
model. Right panel: the improvement from including CFSv2 and including a robust variance scaling 
in the processing. 

5 The EUROSIP calibrated p.d.f. 
The original set of multi-model forecast products from EUROSIP are conceptually 
simple, in that they represent the simplest possible combination of the forecasts from 
each model. For example, the tercile probabilities for spatial maps are formed by 
averaging the corresponding probabilities from the individual models, and for the 
ENSO SST plumes, the ensemble members from the different models are all plotted 
together, as in Figure 4a below. There are two ways in which we would like to improve 
on this. Firstly, we believe that models can vary in skill, and that it is not always 
appropriate to weight the models equally. Secondly, since we know that even multi-
model ensembles are not expected to be perfectly reliable, we want to translate model 
output into credible statements about the future - i.e. issue calibrated forecasts. 

Both “improvements” are tricky to achieve. Since we have only a small set of past data 
(very small for the EUROSIP system), any attempt to find optimum weights for the 
models is fraught with the risk of over-fitting to the past. For atmospheric variables, 
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where predictability tends to be lower and therefore the sampling problems worse, we 
will not even attempt any weighting at the present time. But for ENSO SST, forecasts 
have a relatively high level of determinism at least in the shorter seasonal range, and 
since skill can vary appreciably between models (e.g. due to different mean state errors 
or different initialization procedures), it is worth considering whether we can move to 
a robust non-uniform weighting. 

For the second improvement, to interpret the forecast output in terms of real-world 
probabilities, we need to construct a p.d.f.  There are several ways this could be 
attempted, but we aim to keep things as simple as possible to minimise over-fitting 
problems. So, we assume the p.d.f. we want is a normal distribution, whose mean and 
variance must be determined. Since we don’t know the variance, we will in fact end up 
with a “t” distribution. 

 
Figure 4: (a) A multi-model forecast comprising variance-scaled anomalies from each model 
plotted independently, and (b) the corresponding multi-model calibrated p.d.f., whose 
construction is explained in the text. 

 
The method proceeds as follows. First, calculate a robust skill-weighted ensemble 
mean. We do not attempt a multivariate fit due to the small number of data points. We 
estimate the weights as proportional to 1/(error variance) for each model. This would 
be an optimal estimate in the case that the errors were independent. In reality, we 
expect the errors to be correlated, and the use of this weighting will not discriminate 
sufficiently between the different models. (To see this, consider that the part of the 
error variance that is common to models should ideally be ignored, but by use of this 
formula is added to the denominator of every term, leading to a more uniform 
weighting).  However, this conservative approach to assigning weights is what we 
want. To make the method yet more conservative, the final weights are assigned as 
50% uniform weighting, and 50% skill dependent as outlined. 

Several comments are in order. All calculations are strictly cross-validated, which 
means it is easy to make the error statistics worse by having skill dependent 
weightings. (The case where model A is worst is the case where model A has its highest 
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weighting, because all the other years  know about this worst case, but the worst case 
itself does not).  Various other possibilities were tried. Rank weighting instead of error 
variance weighting did not help. A “Quality Control” term was tried, using likelihood 
estimates to downplay the impact of outliers (where if one model is very different to all 
the others in the forecast, it is considered suspect and given less weight), but again this 
did not help.  An interpretation of this is that although outliers are usually wrong, there 
are some cases in which they are not, so ignoring them is dangerous. Finally, although 
we have attempted to produce a robust method of combining the models, most of the 
time the models actually agree reasonably well, so tweaking the method used to 
calculate weights actually has very little impact on calculated scores. 

Having calculated the desired mean of our p.d.f., we must now specify its variance. As a 
first step, all of the multi-model ensembles (i.e. for the re-forecast dates and the 
forecast) are re-centred on their new mean values by adjusting the lower-weighted 
models. That is, the model with the highest weight is unchanged, and the others are 
moved so as to give an ensemble with the desired mean while having the least possible 
impact on the ensemble spread for each date. It is then possible to calculate the error 
variance of the mean forecast over the re-forecast period, and compare with the 
ensemble variance of the multi-model ensemble.  Unbiased estimators are used in both 
cases. The multi-model ensemble spread can then be scaled so that the past forecast 
variance matches the past error variance.  We have a choice at this point: do we scale 
the variance for the particular forecast (e.g. multiply by 0.9 or 1.1 or whatever), or do 
we use the climatological estimate of the forecast error variance from the re-forecasts. 
The choice depends on how much confidence we have in the multi-model’s ability to 
predict interannual variability in forecast skill. We choose to take 50% of the variance 
from the scaled climatological value, and 50% from the scaled forecast value. This 
might be justified in various ways (not least by the results it gives), but note that it is 
inherently robust since if these estimates differ, the calculated forecast uncertainty will 
be dominated by the larger estimate. Thus, if either the re-forecasts or the real-time 
forecast suggest a large error variance, the real-time forecast will be given a large 
spread, and the risk of a disastrous over-confidence is reduced. 

It is noteworthy that a simple analysis suggests that for the multi-model ensemble, 
some use of the predicted uncertainty improves the results, whereas for a single model 
with a comparable level of ensemble-mean skill, this is not the case. This suggests that 
even if the multi-model has comparable skill in the ensemble mean to a high 
performing single model, the multi-model has better information on how the 
uncertainty is varying. 

The final stage in determining the p.d.f. is to specify the degrees of freedom for the “t” 
distribution. There are two main contributors to this, namely the limited number of 
years that the predicted and observed error variances are compared over, and the 
finite ensemble sizes used by the model. For the EUROSIP multi-model system, it is the 
limited number of years which is the main contributor, but the method is general 
enough to be applied to very small ensemble sizes, in which case the ensemble size 
becomes relevant. The use of the “t” distribution means that as either the number of 
past years or the ensemble size becomes small, the p.d.f. naturally broadens due to the 
increased uncertainty in the calibrated forecast. 
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The p.d.f. is plotted showing the 2nd, 10th, 25th, 50th, 75th, 90th and 98th percentiles, 
as in Fig. 4b above. 

Several important points should be noted about interpretation. The p.d.f. has been 
calculated by calibrating the forecast system using past errors. The fact that the 
sampling period is limited is accounted for by the “t” distribution, so the risk of e.g. an 
El Nino event larger than previously observed is in principle already included. 
However, the risk of a real-time forecast having a new category of error is not covered. 
For example, a Tambora scale volcanic eruption (last seen in 1815) would have a major 
impact on SST, but the risk is not included by the analysis of recent forecast errors.  For 
this and other reasons, we do not plot beyond the 2% and 98% limits of the 
distribution. Specifying the extreme tails of the distribution is a hard problem. A more 
likely reason for the forecast p.d.f. to become invalid is the risk of a change in the bias 
of the real-time forecasts relative to the re-forecast period. Of course, the re-forecast 
period itself is likely to contain some inhomogeneities, but real-time systems probably 
carry a higher risk of error due to changes in input data or analysis technique. 

The p.d.f. refers to Bayesian probabilities describing our knowledge of what might 
happen in the future, accounting for errors previously seen in the models we use. A 
different multi-model system (using either a different set of models, or possibly a 
different combination methodology) would be expected to calculate a different p.d.f.  – 
and both are correct.  It is also clear that the better we are able to characterize the 
errors in our forecast system, the more precise our forecasts can become; and that our 
knowledge of the future is dictated more by the accuracy with which we specify the 
uncertainty than the precise value of the “best guess” that we derive from the 
ensemble mean. 

If we purport to show a p.d.f., we should provide some validation. The main way in 
which the results of the method have been checked is by calculation of rank 
histograms. Cross-validated rank histograms show that the derived p.d.f.’s are 
remarkably accurate, including in the tails where one might worry that the risk of 
going wrong is higher. The chances of the observations lying in bins near the tails are 
what they should be, neither more nor less, and our use of the “t” distribution seems to 
validate well.  Sensitivity tests show that verifying different periods (e.g.  whole out of 
sample periods) rather than just using cross-validation can distort the p.d.f. in the case 
that the calibration and verification periods have a different mean bias.  This may 
simply be a question of sampling (we don’t have that many years to work with), but it 
is a reminder that if the mean bias in the forecast system changes, the reliability of our 
forecasts will be degraded. 

6 Practical matters 
Operational forecasting systems need to consider practical matters as well as the 
scientific basis of the forecasts and products. Experience has shown that quality 
control is an important part of a multi-model system, because a wide variety of 
problems and errors can and do occur. The ECMWF system is designed to be as 
automated as possible, because of our limited human resources. Although automatic 
systems can pick up some problems e.g. with incoming data, it must be admitted that 
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so far there is no complete substitute for manual input to the QC process. Particular 
care is needed when new systems are being introduced. 

Operational systems need to run to a timetable. For EUROSIP, this means that the 
multi-model graphical and data products are released at 12Z on the 15th of each 
month, without fail. To enable this, we request that contributor data arrive a number of 
days before this, but there are occasions when data is late. A safety margin in the 
schedule allows some limited flexibility, and in the case that problems are found with 
the data, gives an opportunity for data to be re-sent. Nonetheless, the system allows a 
model to be excluded from the system “on the fly”, should this be necessary. Our 
operational schedules also allow for weekends and the fact that there are times when 
computer systems are down.  

7 The future 
There are many ways in which the EUROSIP multi-model system can be expected to 
improve in the years ahead. Firstly, the constituent models will improve over time.  
Météo-France have a new system running, which will become operational imminently. 
The Met Office also has a new high-resolution forecast system, which they expect to 
introduce before the end of 2012. Beyond these immediate plans, all models will be 
slowly refined and improved over time. Better input data to the multi-model system 
will allow better multi-model forecasts. 

More models are expected to join EUROSIP in the future. One important future 
contributor is DWD, who are working together with colleagues in Hamburg to develop 
an operational seasonal forecast system to contribute to EUROSIP. There are also other 
operational forecasting centres outside Europe who are interested in joining EUROSIP. 

Finally, there is still important scope to improve the way in which multi-model 
products are calculated. The new Nino SST calibrated p.d.f. product gives an idea of the 
improvements that can be made - robust but differentiated combination of output from 
different models, and intelligent calibration against past performance, with full 
allowance for sampling errors due to the limited number of past cases. It should also 
be remembered that EUROSIP is but one part of the overall European and global 
infrastructure for seasonal prediction. Important work remains to be done in 
improving the flow of information from numerical models to end users, as discussed 
elsewhere in this Seminar. 

Acknowledgements 
The Met Office, Météo-France and NCEP are ECMWF’s partners in EUROSIP, and have 
contributed to the data from which the EUROSIP multi-model products are derived. 

  



Stockdale, T.N.: The EUROSIP system - a multi-model approach 

268 | ECMWF Seminar on Seasonal Prediction, 3 – 7 September 2012 

 


	1 Introduction
	2 The multi-model concept
	3 Multi-model results
	4 EUROSIP
	5 The EUROSIP calibrated p.d.f.
	6 Practical matters
	7 The future
	Acknowledgements

