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On the Reliability of Seasonal Forecasts 

T.N. Palmer and A. Weisheimer  
University of Oxford and ECMWF 

1 Introduction 
On a scale of 1-5, where 5 is very good, how skilful are seasonal forecasts today? On a 
similar scale, how skilful can we expect seasonal forecasts to be 30 years from now? 
These types of question are sufficiently vague and open-ended that they appear 
impossibly difficult to answer in any meaningful way. And yet precisely these types of 
question are being asked by policy makers e.g. by the UK Government as it considers 
options for future investment in science (Foresight, 2012).  

Whilst forecast skill for El Nino itself is impressive, nobody would suggest that 
seasonal forecast skill currently merits a “5” for example over Europe. But even if we 
are optimistic and suppose that a “5” is achievable in all regions of the world in 30 
years time, what would this mean? Would it mean that every time there is to be a 
drought in Eastern Africa, or a BBQ summer in the UK, it will be predicted 
unequivocally six months ahead of time? That is clearly a scientifically impossible goal. 
Climate is chaotic and seasonal forecasts must necessarily be probabilistic, reflecting 
the amplification of inevitable initial and model uncertainties.  

In this paper we discuss what a “5” might mean in a probabilistic sense, how close we 
are to achieving a “5” today, and what is needed to achieve a “5” in 30 years time. It will 
be concluded that focussing on a single skill score may not be the best way of assessing 
the utility of a forecast system, and we propose a rather different measure by which a 
system can be rated “5”, based on its reliability when non-climatological probabilities 
are forecast.  

2 Probabilistic Skill 
Forecasts are used to make decisions. For example, an agronomist might be tasked to 
advise farmers on what type of crop to plant in the coming season. Suppose there is a 
choice between two types of crop: A and B. The crop yield (tons/hectare) CA and CB of A 
and B depends on a number of meteorological variables such as temperature and 
precipitation. These are collectively labelled by X. Hence CA = CA (X) and CB = CB (X). 
Suppose a forecast system predicts over a given season a probability distribution ρ(X) 
for X. Then the expected crop yield for A and B is  
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If >A BC C the agronomist might recommend A over B and vice versa. (In practice of 

course there may be many factors other than climate which determine the 
agronomist’s advice, but let us suppose here that climate is the only relevant one.) 

Now in general, one can expect to be a nonlinear function of X. Hence AC  will 

depend on more than just the mode of ρ. The uncertainty, given by the spread of the 
forecast distribution, might also have a substantial impact on the estimate AC .  

It can be assumed that the agronomist knows the climatological distribution ρ ( )C X  of 

. Let us assume that  

 ( ) ( ) ( ) ( )ρ ρ≡ > ≡∫ ∫A A C B B CC C
X X

C C X X dX C C X X dX  

Now let’s suppose that the forecast system is reliable, but in the majority of forecast 
occasions, ρ(X) is not significantly different from ρC.(X). Then whilst the agronomist is 
not going to gain any specially useful information from the forecast system, (s)he is not 
going to mislead the farmer with unreliable information. However, on occasions where 
ρ ρ≠( ) ( )CX X  such that <A BC C , knowing that the forecast system is reliable is 
essential if the agronomist is to recommend B over A to farmers.  

One way to assess whether such ρs are reliable when ρ ρ≠ C  is to study so-called 

Attributes (or “Reliability”) Diagrams. Such diagrams are shown in the next Section.  

In this paper we are going to study the reliability of ECMWF’s System 4 seasonal 
forecasts, focussing on the situations where ρ ρ≠ C . 

3 Reliability of System 4 
Here we assess Attributes (or Reliability) Diagrams for the ECMWF System 4 seasonal 
forecast system as one of the best state-of-the-art dynamical seasonal forecasting 
systems in the world. It is based on the coupled atmosphere-ocean model IFS/NEMO 
with a horizontal atmospheric spectral resolution of TL255 (~80km) and a 1° x 1° 
resolution for the ocean component in mid-latitudes and enhanced meridional 
resolution near the equator. System 4 became operational in November 2011 and 
produces probabilistic forecasts of global seasonal-mean climate conditions every 
month. We focus our analysis on the December to February (DJF) and June to August 
(JJA) seasons initialised on 1st November and 1st May, respectively. Attributes 
Diagrams are computed from the retrospective forecasts (re-forecasts) over the 30-
year period 1981-2010 using 15 ensemble members. The verification data we use are 
re-analyses of 2m temperature and sea surface temperatures (SST) (Dee et al., 2011) 
and GPCP for precipitation (Adler et al., 2003). All data considered are either observed 
or modelled anomalies with respect to the 30-year re-forecast period climatological 
mean estimated in leaving-one-year-out cross-validation mode. 
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In the following we are going to consider dichotomous events E based on terciles of the 
climatological forecast distribution of seasonal forecast anomalies. If E is defined as 
falling into the lower tercile of the distribution, the event is called “cold” for 2m 
temperature and SSTs, and “dry” for precipitation. Similarly, if E relates to the upper 
tercile, the event is called “warm” or “wet”. 

Attributes Diagrams summarise for a given event the correspondence of the forecast 
probabilities with the observed frequency of occurrence of the events given the 
forecast.  For example, consider the wet event E that the precipitation anomaly lies in 
the upper tercile of the climatological forecast probability distribution. Suppose the 
seasonal forecast probability for the event is equal to 0.8. Then, in a reliable seasonal 
forecast system, E would actually occur, taking into account sampling uncertainty, on 
80% of occasions where E was predicted with a probability of 0.8.  

Figure 1 shows an example of an attributes diagram for the warm SST event E during 
DJF in the Nino3.4 region of the central tropical Pacific. The vertical and horizontal line 
intersection at 1/3 indicates the climatological frequencies of 1/3 of E for the forecasts 
and observation, respectively. The diagonal in the diagram is the line of perfect 
reliability. The black dots show how well the binned forecast probabilities for this 
event verify in terms of frequency of occurrence. Note the size of the dots is 
proportional to the number of cases falling into that frequency bin. Each of the dots has 
95% confidence intervals for the estimate of the observed frequency attached to them 
(for big dots the intervals might become invisible). Here, the confidence intervals were 
estimated from a bootstrap procedure with 1000 resamples. A weighted linear 
regression has been fitted to the data points as the “reliability curve” and is shown by 
the black line. If the reliability curve has a slope larger than the slope indicated by the 
dashed grey line, the forecast will have a positive Brier Skill Score compared with a 
climatological reference forecast. If the reliability curve is flatter than the dashed no-
skill line, then the forecast system is overconfident. For flat curves there is no 
relationship between the forecast probabilities and the observed frequencies of 
occurrence and the system is not reliable beyond climatology.  

How would a reliability curve link to the 1-5 scale mentioned above? As discussed 
above, it is unrealistic to expect an “ideal” seasonal forecast system to produce 
unequivocal forecasts on all occasions. Indeed, it may be unrealistic to expect an “ideal” 
seasonal forecast system to produce forecast probabilities that differ from climatology 
on all occasions – seasonal predictability may be a more intermittent property of 
nature. Hence we shouldn’t penalise a seasonal forecast system because it predicts 
climatological probabilities on occasion. That is to say, a “5” shouldn’t necessarily be 
defined in terms of high Brier Skill Score. Rather, we take the view here that an “ideal” 
seasonal forecast system should be rated “5” (for given region and event) if the 
corresponding reliability curve is, within the error bar uncertainty, on or very close to, 
the diagonal. A “4” will be given to cases where the slope of the regression line is 
positive and larger than the slope of the dashed no-skill line. If the slope of the 
reliability curve is positive but less than the dashed line, we will give it a “3”. Near-
horizontal reliability curves will score as “2” and those curves that have a negative 
slope will be getting a “1”. 
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b) 
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Figure 1: Attributes (Reliability) Diagrams for warm SSTs in DJF in the a) tropical central Pacific 
Nino3.4, b) tropical Atlantic, c) western tropical Indian Ocean, d) eastern tropical Indian Ocean and 
e) tropical Indian Ocean. 

 

El Nino Southern Oscillation (ENSO) as the dominant coupled atmosphere-ocean mode 
of variability on seasonal time scales is the central phenomenon for seasonal 
forecasting. Figure 1 shows the Attributes Diagrams for warm SST events in DJF for 
different tropical ocean areas. The seasonal forecasts of SSTs in the central tropical 
Pacific Nino3.4 region (Fig 1a) are extremely reliable with the two principal forecast 
probabilities of ~0 and ~1 lying almost exactly on the diagonal. The remaining forecast 
probabilities between 0 and 1 were populated by very few data and thus have a small 
relative weight but large error bars. Fig 1a indicates that the SST forecasts for this 
event are very close to perfect deterministic forecasts where the event is either 
correctly predicted to occur with certainty, or correctly predicted to not occur with 
certainty.  We would thus rate the Fig 1a ENSO reliability with a “5”. 

SST forecasts for the tropical Atlantic, as displayed in Fig 1b, show a positive slope of 
the reliability curve which is larger than the no-skill line slope. We score these 
forecasts with a “4” according to our scoring rules mentioned above.  

Forecast evaluations for the tropical Indian Ocean SSTs are shown in Fig 1c-e. Here, the 
western Indian Ocean (Fig 1c) and the eastern Indian Ocean (Fig 1d) perform with a 
near-perfect reliability (“5”) whereas the entire tropical Indian Ocean basin in Fig 1e 
would rate at a “4”. Note that in contrast to the tropical central Pacific, for both the 
tropical Atlantic and the tropical Ocean the population of the forecast probability bins 
is much more homogeneous across the range of possible forecast probabilities, 
indicating how important it is to have a probabilistic forecasting system. 

How reliable are the S4 seasonal forecasts for near-surface temperature and 
precipitation on the global scale? Forecasts of cold boreal winters (Fig 2a) and warm 
boreal summers (Fig 2b) computed from all model grid points on a 2.5° grid show a 
reliability curve that lies in the skilful area of the diagram and thus would be ranked a 
“4”. However, global precipitation forecasts are less reliable and can only be scored as 
“3” (Fig 2d for dry JJA) to “4” at most (Fig 2c for wet DJF).  
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a) 

 

b) 
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Figure 2: Attributes (Reliability) diagrams for global a) cold 2m temperature in DJF, b) warm 2m 
temperature in JJA, c) wet precipitation in DJF and d) dry precipitation in JJA. 

 

In the following we analyse the temperature and precipitation reliability performance 
of S4 for selected regions over land, as these are areas that are central for the use of 
seasonal forecast information. For the definition of the areas, see Giorgi and Francisco 
(2000). As demonstrated in Fig 1a, forecasts of the tropical Pacific ENSO SST events 
over the next season are highly skilful. The continental areas that are most directly 
affected by ENSO teleconnection patterns in the atmosphere are South America and the 
Maritime Continent of South-East Asia and one would thus expect that these areas also 
show good skill in forecasting seasonal climate anomalies. Indeed, warm and wet DJF 
forecasts in the Amazon region (Fig 3a and 3b) show a positive slope of the reliability 
curve rating with a “5” and a “4”, respectively. Similarly, cold and wet JJA over South-
East Asia in Fig 4 are also reasonably reliable with scores of “4”. 

 

a) 

 

b) 

 
Figure 3: Attributes (Reliability) Diagrams over the Amazon region for a) warm 2m temperature in 
DJF and b) wet precipitation in DJF. 
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a) 

 

b) 

 
Figure 4: Attributes (Reliability) Diagrams over the South-East Asia region for a) cold 2m 
temperature in JJA and b) wet precipitation in JJA. 

How reliable are forecasts of the Indian monsoon? In Fig 5a we show the attributes 
diagram for wet JJA over South Asia. The reliability curve has a positive slope which 
means that in general there is a positive relationship between forecast probabilities 
and the frequency of occurrence. However, the curve does not fall into the skilful area 
of the diagram as bounded by the dashed no-skill line and thus rates as a “3”. Note that 
there are very few cases of forecasts with probabilities > 0.5 and that the forecasts 
mainly cluster around the climatological probability of 1/3. The forecasts for wet 
months of May which corresponds to the first month of the seasonal forecasts 
initialised on 1st May indicate a better reliability (Fig 5b) with a positive and skilful 
reliability curve rated at “4”. 

a) 

 

b) 

 
Figure 5: Attributes (Reliability) Diagrams over the South Asia (Indian sub-continent) region for  
a) wet precipitation in JJA and b) wet precipitation in May (1st forecast month). 

The above diagrams were examples of moderately to very good seasonal forecast skill 
in terms of forecast reliability.  However, seasonal predictability in the extra-tropics is, 
in general, lower due to the internal variability of the coupled atmosphere-ocean 
system, the lack of relevant teleconnection mechanisms and difficulties of general 
circulation models to simulate these. For example, Fig 6a shows the attributes diagram 
of wet summers (JJA) over central North America. For this case, the fitted reliability 
curve has a negative slope indicating a weak inverse relationship between the forecast 
probability of the event and the frequency of the event eventually occurring. This 
means, for example, that if the event E is forecast with a high probability, it actually is 
not likely to occur. Such forecasts clearly rate as a “1” (very poor!) in our scale of 
forecast skill.  
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It is interesting to note though, that on the monthly time scale the reliability of the 
forecasts for the same event is extremely good (marked at a “5”), as shown in Fig 5b. 
This is an example of a forecasting situation where the impact of the initial conditions 
diminishes after the first month and the lack of useful sources of seasonal forecasting 
skill and imperfect representations of model uncertainty lead to a very poor 
performance for longer lead times. 

A similar though not as drastic situation arises for Northern European wet winters (Fig 
7a). Here, most of the forecast probabilities cluster around the climatological 
background probability. The slope of the regression reliability curve is positive but less 
than for a skilful system. We give such a forecasting performance a “3”. Again, the 
reliability for the first month of the forecast is clearly better than for the first season of 
the forecast (Fig 7b) and would rate as a “4” out of 5. 

 

a) 

 

b) 

 
Figure 6: Attributes (Reliability) Diagrams over the Central North America region for  
a) wet precipitation in JJA and b) wet precipitation in May (1st forecast month). 

a) 

 

b) 

 
Figure 7: Attributes (Reliability) Diagrams over the Northern Europe region for  
a) wet precipitation in DJF and b) wet precipitation in November (1st forecast month). 

 

Our last example is the forecast skill for Southern European dry summers in Fig 8a. 
The reliability curve is nearly flat which indicates virtually no relationship between the 
forecast and the observations: the forecast probability is mostly irrelevant for 
predicting the occurrence of dry Mediterranean summers. Such a forecast scores as a 
“2”. In contrast, the forecasting system performs better for predicting dry conditions in 
May (Fig 8b) with a positive and just skilful slope of the reliability curve (“4”). 
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a) 

 

b) 

 
Figure 8: Attributes (Reliability) Diagrams over the South Europe/Mediterranean region for  
a) dry precipitation in JJA and b) dry precipitation in May (1st forecast month). 

 

4 How can seasonal forecast reliability be improved? 
The results above suggest that we still have some way to go before we can say we have 
achieved the goal of providing users with reliable forecasts, particularly for 
precipitation and away from the El Nino region. Of course, it is always possible to 
calibrate the forecasts so that they become reliable a posteriori.  However, one should 
not rely on calibration to provide reliability. Firstly such calibration would effectively 
remove any sharpness from the distributions and thus the resulting system may have 
little value over that of a climatological forecast.  Secondly, one cannot be certain that 
the system will remain reliable out of sample.  

There can be little doubt that the ability to represent physical processes accurately is 
key to improved reliability. In a recent study based on Athena integrations (Jung et al., 
20112), Dawson et al. (2012) was able to show in AMIP integrations that the ECMWF 
model could simulate the non-Gaussian structure of observed Euro-Atlantic weather 
regimes more accurately in a T1279 model than a T159 model. It is plausible that the 
improved simulation of such weather regimes in a T1279 model is associated with 
better representation of topography on the one hand, and with a more realistic 
representation of Rossby wave breaking on the other.  

A better representation of other Earth System components is also likely to improve 
reliability. For example, Weisheimer et al. (2011a) showed that a better representation 
of land surface processes led to remarkably good probabilistic forecast of the summer 
2003 heat wave. 

On the other hand, since the climate system is chaotic, it is necessary to represent 
inevitable uncertainties in the representation of processes which have to be 
parameterised. There has been a programme to represent parameterisation 
uncertainty using stochastic methodologies for some time at ECMWF (Buizza et al., 
1999; Palmer, 2001; Palmer, 2012). On the monthly and seasonal timescales there is 
evidence that it is competitive with, and for temperature predictions can outperform, 
the more standard multi-model ensemble approaches to the representation of model 
uncertainty (Weisheimer et al., 2011b).  
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There can be little doubt about the value to society of reliable non-climatological 
predictions of seasonal climate. However, to develop a high resolution system with 
accurate stochastic representations of model uncertainty in all relevant components of 
the Earth System, is not only a formidable technical challenge, it is one that will require 
computing resources which are unavailable to individual institutes in the foreseeable 
future. A possible route to achieve the goal of a reliable seasonal climate prediction 
system, based on much stronger international collaboration, has been presented 
elsewhere (Shukla et al., 2010; Shapiro et al., 2010; Palmer, 2011; Palmer, 2012).  

5 Conclusions 
Let us return to the question posed in the Introduction. What constitutes a “5”, to 
which a seasonal forecast system should aspire? Here we propose the following broad 
criterion for rating a seasonal forecast system a “5”: when the system predicts 
probabilities ρ(X) that are substantially different from the climatological distribution 
ρc(X) then these probabilities can be relied on, and acted on by decision makers. Note 
that we make no firm statement about how often such situations arise. It may be that in 
many cases the forecast system does not predict probabilities that differ substantially 
from ρc(X). If this is the case, then the probabilistic skill score may not be particularly 
high. However, for such a forecast system, a user will not make a bad decision based on 
unreliable forecast information.  

The ECMWF System 4 cannot be rated a “5” for all regions of the world, and for all 
variables. We have shown that for temperature, and even more for precipitation, 
forecast probabilities are not reliable when different from climatology and away from 
the El Nino region. Based on current performance and expected increases in resolution 
and better stochastic representations of model uncertainty our current capability to 
forecast seasonal climate could perhaps be rated 2/5 overall, with the potential to rise 
to 4/5 by 2040.  
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