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Observation Influence cECMWF

Summary

The influence matrix is used in ordinary least-squares egiidins for monitoring statistical multiple-
regression analyses. Concepts related to the influencexmpadvide diagnostics on the influence of
individual data on the analysis, the analysis change thatdaaccur by leaving one observation out, and
the effective information content (degrees of freedom fgnal) in any sub-set of the analysed data. In
this paper, the corresponding concepts are derived in thiexioof linear statistical data assimilation in
Numerical Weather Prediction. An approximate method to mate the diagonal elements of the influ-
ence matrix (the self-sensitivities) has been developed farge-dimension variational data assimilation
system (the 4D-Var system of the European Centre for MedRamge Weather Forecasts). Results show
that, in the ECMWF operational system, 18% of the global arilte is due to the assimilated observa-
tions, and the complementary 82% is the influence of the |pbiackground) information, a short-range
forecast containing information from earlier assimilatégbervations. About 20% of the observational
information is currently provided by surface-based ohsgreystems, and 80% by satellite systems.

A toy-model is developed to illustrate how the observatiofluence depends on the data assimilation
covariance matrices. In particular, the role of high-clatex! observation error and high-correlated back-
ground error with respect to uncorrelated ones is presehigd-influence data points usually occur in
data-rich areas, while high-influence data points are ia-dparse areas or in dynamically active regions.
Background error correlations also play an important rbigh correlation diminishes the observation in-
fluence and amplifies the importance of the surrounding rehpaeudo observations (prior information
in observation space). To increase the observation infei@nthe presence of high correlated back-
ground error, it is necessary to also take the observatimn eorrelation into consideration. However, if
the observation error variance is too large with respedieédoackground error variance the observation
influence will not increase. Incorrect specifications of laekground and observation error covariance
matrices can be identified by the use of the influence matrix.

KEYWORDS: Observations Influence Data Assimilation Regji@asMethods

1 Introduction

Over the years, data assimilation schemes have evolvedéngyacomplicated systems, such as the four-
dimensional variational system (4D-Var) (Rabétal. 2000) at the European Centre for Medium-Range
Weather Forecasts (ECMWF). The scheme handles a largeyvafiboth space and surface-based me-
teorological observations. It combines the observatioits prior (or background) information of the
atmospheric state and uses a comprehensive (linearizextaki model to ensure that the observations
are given a dynamically realistic, as well as statisticikgly response in the analysis.

Effective monitoring of such a complex system, with the orde10° degrees of freedom and more
than 10 observations per 12-hour assimilation cycle, is a negesHite monitoring cannot be restricted
to just a few indicators, but a complex set of measures isatetmlindicate how different variables and
regions influence the data assimilation (DA) scheme. Messoirthe observational influence are useful
for understanding the DA scheme itself: How large is the atilte of the latest data on the analysis
and how much influence is due to the background? How much wbeldnalysis change if one single
influential observation were removed? How much informatioextracted from the available data? It is
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the aim of this work to provide such analytical tools.

We turn to the diagnostic methods that have been developeddoitoring statistical multiple regression
analyses. In fact, 4D-Var is a special case of the Genedalirast Square (GLS) problem (Talagrand,
1997) for weighted regression, thoroughly investigateth@nstatistical literature.

The structure of many regression data sets makes effedagmakis and fitting a delicate matter. In
robust (resistant) regression, one specific issue is tageguwrotection against distortion by anomalous
data. In fact, a single unusual observation can heavilyodishe results of ordinary (non-robust) LS
regression (Hoagliet al. 1982). Unusual or influential data points are not necdgdaaid data points:
they may contain some of the most useful sample informatkeor. practical data analysis, it helps to
judge such effects quantitatively. A convenient diagmosteasures the effect of a (small) change in
the observatioly; on the corresponding predicted (estimated) vgjuelri LS regression this involves a
straightforward calculation: any changeyinhas a proportional impact of .” The desired information
is available in the diagonal of thHeat matrix (Velleman and Welsh, 1981), which gives the estimated
valuesy; as a linear combination of the observed valyesThe termhat matrixwas introduced by J.W.
Tukey (Tukey, 1972) because the matrix maps the observedictory into ¥, but it is also referred to as
the influence matrixsince its elements indicate the data influence on the regregsof the data. The
matrix elements have also been referred to addherageof the data points: in case of hidaverage

a unit y-value will highly disturb the fit (Hoaglin and Welsh978). Concepts related to the influence
matrix also provide diagnostics on the change that wouldiobyg leaving one data point out, and the
effective information content (degrees of freedom for aljjim the data.

These influence matrix diagnostics are explained in Se&ifor ordinary least-squares regression. In
Section 3 the corresponding concepts for linear statisiiéaschemes is derived. It will be shown that
observational influence and background influence complesseh other. Thus, for any observatign
either very large or very small influence could be the signnafdequacy in the assimilation scheme,
and may require further investigation. A practical appnoxie method that enables calculation of the
diagonal elements of the influence matrix for large-dimemsiariational schemes (such as ECMWFs
operational 4D-Var system) is described in Cardiralal 2004 and therefore not shown here. In Sec-
tion 4 results and selected examples related to data infudiagnostics are presented, including an
investigation into the effective information content irveel of the main types of observational data.
Conclusions are drawn in Section 5.

2 Classical Statistical Definitions of Influence Matrix and ®If-Sensitivity

The ordinary linear regression model can be written:
y=XB+¢ 1)

wherey is anmx 1 vector for the response variable (predictandl)s anmxq matrix of q predictors;3 is
aqx1vector of parameters to be estimated (the regression deetfiy ands is anmx 1 vector of errors
(or fluctuations) with expectation(E)=0 and covariance vég)=0?l, (that is, uncorrelated observation
errors). In fitting the modell]) by LS, the number of observationshas to be greater than the number
of parameterg in order to have a well-posed problem, axids assumed to have full rartk

The LS method provides the solution of the regression eguais

B = (XTX)~1XTy. The fitted (or estimated) response vector is thus:

y =Sy (2)
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where
S=X(XTX)"IxT (3)

is themxm influence matriXor hat matrix). It is easily seen that

oy
S=5 (@)
and that
oY
S' — 7
J 5yJ
_ %%
Si=5, (5)

for the off-diagonal i%j) and the diagonalij) elements, respectively. Thus;  the rate of change
of yi with respect toy; variations. The diagonal element Bistead, measures the rate of change of the
regression estimatg With respect to variations in the corresponding obseruatio For this reason the
self-sensitivity(or self-influence, or leverage) of tfif8 data point is thé" diagonal element;Swhile an
off-diagonal element is eross-sensitivitgliagnostic between two data points. Hoaglin and Welsh (1978
discuss some properties of the influence matrix. The didghdements satisfy:

0<Si<1
i=12,....m (6)

asSis a symmetric and idempotent projection mat®e&). The covariance of the error in the estimate
Y, and the covariance of the residuay-y are related t& by

var(y) = 0°S
var(r) = 0%(Im—9S) (7
The trace of the influence matrix is:
m
tr(S) = ZlSi = q=rank(S) (8)
i=

(in fact S hasm eigenvalues equals to 1 ama-q zeros). Thus, the trace is equal to the number of
parameters. The trace can be interpreted as the amounbahiation extracted from the observations
or degrees of freedom for sign@lVahbaet al. 1995). The complementary trade(l-S)=m-tr(S) , on the
other hand, is the degree of freedom for noise, or simply duygak of freedondf) of the error variance,
widely used for model checking (F test).

A zero self-sensitivity $=0 indicates that théh observation has had no influence at all in the fit, while
Sii=1 indicates that an entire degree of freedom (effectively parameter) has been devoted to fitting
just that data point. The average self-sensitivity valug/isand an individual element;Ss considered
‘large’ if its value is greater than three times the averaggiéman and Welsh, 1981). By a symmetrical
argument a self-sensitivity value that is less than onettii the average is considered ‘small’.
Furthermore, the change in the estimate that occurs wheH thieservation is deleted is

yi— i) = ri 9)
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wherey(~7) is the LS estimate of;yobtained by leaving-out th&iobservation of the vector and the
it row of the matrixX. The method is useful to assess the quality of the analysissimg the discarded
observation, but impractical for large systems. The foarsliows that the impact of deleting; &)
ony; can be computed by knowing only the residuahnd the diagonal element; S the nearer the
self-sensitivity $ is to one, the more impact on the estimgte A related result concerns the so-called
cross-validation (CV) score: that is, the LS objective fimt obtained when each data point is in turn
deleted (Whaba, 1990, theorem 4.2.1):

il w(=i2 _ il (Yi—)7i)2
i;()ﬁ vi'™") iZ\ 7(1_ S)2 (20)
This theorem shows that the CV score can be computed by gebyinthe all-data estimatg and the
self-sensitivities, without actually performimgseparate LS regressions on the leaving-out-one samples.
Moreover, @) shows how to compute self-sensitivities by the leavintrtame experiment.

The definitions of influence matrixX) and self-sensitivity §) are rather general and can be applied also
to non-LS and nonparametric statistics. In spline regoesdior example, the interpretation remains
essentially the same as in ordinary linear regression arsd afithe results, like the CV-theorem above,
still apply. In this context, Craven and Wahba (1979) prepothe generalized-CV score, replacing in
(10) S; by the mearntr(S)/g. For further applications of influence diagnostics beyosigaliLS regression
(and further references) see Ye (1998) and S (2002). The notions related to the influence matrix
that it has introduced here will in the following section lerided in the context of a statistical analysis
scheme used for data assimilation in numerical weatheiigtiea (NWP).

3 Observational Influence and Self-Sensitivity for a DA Scheae

(a) Linear statistical estimation in Numerical Weather &iion

Data assimilation systems for NWP provide estimates of thespheric stat& by combining meteo-
rological observationy with prior (or background) informatior,. A simple Bayesian Normal model
provides the solution as the posterior expectationxfogiveny and x,. The same solution can be
achieved from a classicfilequentistapproach, based on a statistical linear analysis schenvidig
the Best Linear Unbiased Estimate (Talagrand, 199%) giveny andx,. The optimal GLS solution to
the analysis problem (see Lorenc, 1986) can be written

Xa =Ky + (In— KH)xp (12)

The vectorx, is the ‘analysis’. The gain matrik (nxm) takes into account the respective accuracies of
the background vectot, and the observation vectgras defined by thexn covariance matrix8 and
themx m covariance matriR, with

K=B1+HTRH)HTR? (12)

Here,H is amxn matrix interpolating the background fields to the obseoratocations, and trans-
forming the model variables to observed quantities (e.diatave transfer calculations transforming the
models temperature, humidity and ozone into brightnespéeatures as observed by several satellite
instruments). In the 4D-Var context introduced beldWijs defined to include also the propagation in
time of the atmospheric state vector to the observationgiosing a forecast model. Substitutiri)
into (??) and projecting the analysis estimate onto the observafiace, the estimate becomes

¥ = Hxa = HKy + (I — HK)HXxj, (13)
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It can be seen that the analysis state in observation spigg ié defined as a sum of the background (in
observation spacéx,) and the observationg weighted by theanxm square matricesHK andHK
respectively.

Equation {3) is the analogue ofl], except for the last term on the right hand side. In this ctse
each unknown component éfx, there are two data values: a real and a ‘pseudo’ observaiite
additional term in 13) includes these pseudo-observations, representing kmimwledge provided by
the observation-space backgrourd,. From (L3) and @), the analysis sensitivity with respect to the
observations is obtained

_ Oy T
=5, ~ K™ (14)

Similarly, the analysis sensitivity with respect to the kground (in observation space) is given by

_ 1 _kT T: _
5(be)_| KTHT =Im—S (15)

Lets focus here on the expressiodd)(and (L5). The influence matrix for the weighted regression DA
scheme is actually more complex (see Appendix 1), but it wlescthe dichotomy of the sensitivities
between data and model in observation space.

The (projected) background influence is complementaryambservation influence. For example, if the
self-sensitivity with respect to th&iobservation is § the sensitivity with respect the background pro-
jected at the same variable, location and time will be sinip§;. It also follows that the complementary
trace, tr(-S)=m-tr(S), is not thedf for noise but for background, instead. That is the weighegito
prior information, to be compared to the observational WeigS). These are the main differences with
respect to standard LS regression. Note that the differlesg¢rations can have different units, so that
the units of the cross-sensitivities are the correspondinigratios. Self-sensitivities, however, are pure
numbers (no units) as in standard regression. Finally,rasdsR is diagonal, §) is assured (see Section
3(b)), but for more general non-diagorRRimatrices it is easy to find counter-examples to that prgpert
Inserting (L2) into (14), we obtain

S=R MHB I+HRH)HT (16)
As (B"1+HTR'H) ! is equal to the analysis error covariance matkixwe can also writeS =

RIHAHT.
(b) R diagonal

In this section it is shown that as long Rds diagonal 6) is satisfied. Equatiorl) can be written as

S=R HB-BH"(HBHT +R) HBJHT
=R HBHT —R *HBHT(HBHT + R) *HBHT (17)

Lets introduce the matriv=HBH T, (17) becomes
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S=RW-RWVV+R)V
=R V[ - (V+R)1V]
=R V[V+R) 1 V+R)—(V+R) V]
=R V(\V+R) 'R
=R Y(V+R)(V+R) 1 -R(V+R) R
=R I -R(V+R) R
=1-(V+R) 'R
=(V+R)lv (18)

SinceV andR are positive definite covariance matrices, the mawixR) is positive definite as well. In
fact by definition for a non-zero vectorswith real entries the quantiy’ (V +R)z=z"Vz+2z"Rz > 0.
Lets consider the following theorem: [ is positive definite matrix the® ! is positive definite and
defining D‘lz{cij} , D={d;; } we have:d; > 1/d; where the equality holds if and only @; = .. =
dj_1 = dijy1 = .. = din—o.

The diagonal elements @‘1:(V+R)‘1:{cij} are then larger than the diagonal elements\6fK).
Moreover, ifV={v;; } andR=diag(;) we obtain

1
o 19
G = Vii + i (19)
0
And since the-diagonal element qV+R) 'R is (&1,...,0n) | i | = &iri
0
i
Ol > o o (20)
Il |

From (18) considering that the product of two positive definite maisistill a positive definite matrix

Fi Vii

0<§=1-¢grn<1- =
Si Gifi < Vi +ri Vit

(21)

(21) proves that the diagonal elements of the influence matrixhfe weighted regression DA scheme
are bound between (0,1).

(c) Toy model

Lets assume a simplified model with two observations, eaufcictent with a point of the background
- that isH=I,. Assume the error of the background at the two locations kawelationa, that is /
L (i > , with varianceo?, and that simiIarI;Rza&( ng li
tion 3. For this simple cas8 is obtained from 14)

B=0? > with varianced? and correla-

6 Lecture Notes: Data Assimilation



Observation Influence cECMWF

0202(1—apB)+gp(1—a?)
op(1—a?)+ 0d(1— B2) +20202(1— ap)
ap04(a —pB)
0p(1—a?) +0g(1— B?) +20504(1 - ap)

Si1=S2= (22)

(23)

So=91=

Fora # +1 andf # +1 (R andB are full rank matrices). Lets defime= ag/ag, (22) and @3) reduce
too

r(l—apB)+1—a?
(1-B2)+1—-a2+2r(1l—ap)

r(a—B)
(1-B2)+1—-a2+2r(1—apP) (25)

Si=Sr= (24)

S2=Su=

Figure 1 shows the diagonal elements of the influence matrix as aimof r,S; = Si(r) (Eq. 24).
From now on, $ is also indicated as Observation Influence (Ol). In gendhal observation influence
decreases with the increaseroffor highly correlatedq = 0.9, = 0.9) and diagonala = 0,8 = 0)

R andB matrices, the observation influence as a functionisfthe same (solid grey line and dash thick
line, respectively). Maximum observation influence is aebd wherB is diagonal(a = 0) andR is
highly correlated 3 = 0.9) (thin black line). The observation influence will constgritecrease from the
‘maximum curve’ with the decrease of the correlation degmeR (B still diagonal). And the minimum
observation influence curve is achieved wikeis diagonal(3 = 0) andB is highly correlated a = 0.9)
(thick solid line). It is worth to notice that if the obseriat error variance is larger than the background
error variance o2 > oi2) introducing the observation error correlation will slityhincrease the observa-
tion influence and foo? >> ¢ the observations will not be more influent in the analysipdeR is not
diagonal.

(i) R diagonal andB non-diagonal(a # 0,3 = 0). Equations 24) and @5) reduce respectively to

r+1—a?
p— = —————— 2
Si1= S (26)
ra
Sio=S1 S R (27)

It can be seen that if the observations are very close (cadparthe scale-length of the background
error correlation), i.er ~1 (data dense area), then

1
= = = ~_— 28
S1=S2=S2=5 " (28)
Furthermore, ifo, = 0y, that isr = 1, we have three pieces of information with equal accuracySan=
S2 = 1/3. The background sensitivity at both locations is $1 = 1— S, = 2/3. If the observation is
much more accurate than the backgrouag® g,), that isr ~ 0, then both observations have influence
S11 =S92 =1/2, and the background sensitivities are 1 =1— S =1/2.
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Lets now turn to the dependence on the background-erroelation a, for the caseg, = 0, (r = 1). It
is

2_ 2
Si1=S= 4_22 (29)
Si2=S1= 4—aa2 (30)

If the locations are far apart, such that~ 0, thenS;; = S, = 1/2, the background sensitivity is also
% and S, = $; = 0. It can be concluded that where observations are sp8rsmd the background-
sensitivity are determined by their relative accuracig¢suid the off-diagonal terms are small (indicating
that surrounding observations have small influence). Qselg where observations are densgtehds

to be small, the background-sensitivities tend to be largkthae off-diagonal terms are also large.

It is also convenient to summarize the cage= 0, (r = 1) by showing the projected analysis at location
1

Vo= g2 %y +-2x - o yo) (31)
The estimatey; depends oy, X1 and an additional term due to the second observation. Itisetbthat,

with a diagonalR, the observational contribution is generally devaluedhwéspect to the background

because a group of correlated background values count imamelie single observatiqor — +1, (2—

a?) — 1]. From the expression above we also see that the contribfrtm the second observation is in-

creasing with the correlations absolute value, implyingrgér contribution due to the backgroundand observation

—_— 3=0.9, b=0 a=0.9, b=0.9 = = a=0, b=0 — a=0, b=0.9

0 0.5 1 1.5 2 25 3

Figure 1: Self-Sensitivities or Observation Influence (&¥)a function of the ratio between the observation error
variance and the background error variance. Four differeases are shown: highly correlat@Band uncorrelated

R (thick black line). Highly correlatedR and highly correlated (thick grey line). Uncorrelated and highly
correlatedR (thin grey line). UncorrelatedR and uncorrelated (dashed black line).

4 Results

The diagonal elements of the influence matrix have been ctadgar the operational 4D-Var assimila-
tion system at T159 spectral truncation 91 model levels fio@er 2011. For the calculation details see
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Cardinaliet al2004 and Appendix B. The observation departyekixy) were calculated by comparing
the observations with a 12-hour forecast integration atLTreé$olution. The assimilated observations for
each main observation type are given in Tablé large proportion~ (98%) of the used data is provided
by satellite systems.

(a) Trace diagnostic: Observation Influence and DFS

The global average Observation Influence (Ol) is defined as

_tr(S
ol == (32)

wherem is the total number of observations. For October 2011 OB:0Qonsequently, the average
background global influence to the analysis at observatmampis equal to 0.82 (sekb). It is clear that
in the ECMWF system the global observation influence is duaite

In Fig. 2 the Ol for the all different observation types is plotted. In getheDl of conventional observa-
tions (SYNOP, DRIBU, PROFILER, PILOT, DROP, TEMP, Aircrpifs larger than the satellite one. The
largestOl is provided by DRIBU surface pressure observations bedéeseare located over the oceans
that are in general very poor observed (less than contihargas). Moreover, DRIBU and SYNOP ob-
servations are very high quality measurements and the\@ig®r error variances is quite small, likely
smaller than the background error variance (see ‘toy madeiéection3 (c)). Similarly, theOl~0.4-0.5

of the remaining conventional data is due to their quite sofzdervation error variance. In Secti8rfc)

it has been proved that if R is diagonal B¢ is bounded between (0,1) but from FR.we can see that
DRIBU Ol is higher than 1. This is due to the approximation of the nicagsolution and, in particular,
the use in the influence matrix calculation of an estimatéefnalysis covariance matrix A (see Cardi-
nali et al 2004 for details). On the contrary, td influence of satellite data is quite small. The largest
influence is provided by GPS-RO observation®4) which again are accurate data and likely with un-
correlated observation error (Healy and Thpaut 2006)pWad by AMSU-A measurements-0.3). All

the other observations have an influence of about 0.2. Rgcenanges in the assimilation of ‘All-Sky’
observations (TMI and SSMIS) have increased their influémtige analysis (Cardinali and Prates 2011,
Geeret al 2011)

In Section2 it has been shown that 8| can be interpreted as a measure of the amount of informa-
tion extracted from the observations. In fact, in non-patim statistics, t'$) measures the ‘equivalent
number of parameters’ ategrees of freedom for signal (DE$javing obtained values of all the diag-
onal elements o0& (using 16) we can now obtain reliable estimates of the informationteohin any
subset of the observational data. However, it must be nbtdhis theoretical measure of information
content does not necessarily translate on value of forémgstct. Figure3 shows the information con-
tent for all main observation types. It can be seen that AMStadiances are the most informative data
type, providing 23% of the total observational informatithS| follows with 17% and AIRS with 16%.
The information content of Aircraft (10%) is the largest amgaonventional observations, followed by
TEMP and SYNOP+4%). Noticeable is the 7% of GPS-RC4n the satelliteDFSranking) that well
combines with the 0.4 value for the average observationdnfia. In general, the importance of the
observations as defined by e.g. DESwell correlates with the recent data impact studies by Ra@ho
al, (2010).

Lecture Notes: Data Assimilation 9
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re,

re,

Data Data kind Information
name
OZONE | Backscattered solar UV radiation, re-Ozone, stratosphere
(03) trievals
GOES- US geostationary satellite infrargdMoisture, mid/upper troposphere
Radiance| sounder radiances
MTSAT- | Japanese geostationary satellite [ifvioisture, mid/upper troposphere
Rad frared sounder radiances
MET-rad | EUMETSAT geostationary satellite in-Moisture, mid/upper troposphere
frared sounder radiances
AMSU-B | Microwave sounder radiances Moisture, troposphere
MHS Microwave sounder radiances Moisture, troposphere
MERIS Differential reflected solar radiation, Total column water vapour
retrievals
GPS-RO | GPS radio occultation bending angles Temperature, surface pressure
IASI Infrared sounder radiances Temperature, moisture, ozone
AIRS Infrared sounder radiances Temperature, moisture, ozone
AMSU- Microwave sounder radiances Temperature
A
HIRS Infrared sounder radiances Temperature, moisture, ozone
ASCAT | Microwave scatterometer backscatteBurface wind
coefficients
MODIS- | US polar Atmospheric Motion Vectors, Wind, troposphere
AMV retrievals
Meteosat-| EUMETSAT geostationary Atmot Wind, troposphere
AMV spheric Motion Vectors, retrievals
MTSAT- | Japanese geostationary Atmospherl/ind, troposphere
AMV Motion Vectors, retrievals
GOES- US geostationary Atmospheric MotignWind, troposphere
AMV Vectors, retrievals
PROFILERAmerican, European and Japanesé/ind, troposphere
Wind profiles
PILOT Radiosondes at significant level fromwind, troposphere
land stations
DROP Dropsondes from aircrafts Wind, temperature, moisture, pressu
troposphere
TEMP Radiosondes from land and ships Wind, temperature, moisture, pressu
troposphere
Aircraft | Aircraft measurements Wind, temperature, troposphere
DRIBU Drifting buoys Surface pressure, temperature, mg
ture, wind
SYNOP | Surface Observations at land statignSurface pressure, temperature, md
and on ships ture, wind

Table 1: Observation type assimilated on October 2011. dted humber of data in one assimilation cycle is on

average m-25,000,000.

10
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Similar information content of different observation tgpmay be due to different reasons. For example,
DRIBU and OZONE information content is similarly small bubilst OZONE observations have a very
small average influence (FB).and dense data coverage, DRIBU observations have large infegence
but much lower data counts (F&. Anyhow, the OZONE data are important for the ozone asaiinit

in spite of their low information content per analysis cycla fact, OZONE is generally a long-lived
species, which allows observational information to be atbetby the model over periods of several days.

The difference betwee®| and DFS comes from the number of observation assimilated. Thezgefor
despite the generally low observation influence of sateititasurements, they show quite laiRjeS
because of the large number assimilated. A large discrggagteveenOl and DFS points on those ob-
servation types where a revision of the assigned covariaratdcesR andB will be beneficial: more
information extracted from e.g. satellite measurements.

03
GOES-Rad
MTSAT-Rad
MET-Rad
AMSU-B
MERIS
TMI-1

MODIS-AMV
MTSAT-AMV
GOES-AMV
Meteosat-AMV
PROFIL

DRIBU
Aircraft
SYNOP

. . 1 1 : 1
0 02 04 06 _ 08 1 1.2 14

Figure 2: Observation Influence (Ol) of all assimilated ohsdions in the ECMWF 4DVar system in October
2011. Observation types are described in Table

Another index of interest is the partial Observation InfleeDl ) for any selected subset of data

Ol, = X'CT'IS" (33)

where p; is the number of data in subsktThe subset can represent a specific observation type, a
specific vertical or horizontal domain or a particular metéagical variable. In Fig4 the Ol of Aircraft
data () is plotted as a function of pressure layers and for all olexbparameters: temperature (t), zonal
(u) and meridional (v) component of the wind. The larg@stis provided by temperature observations
(~0.4) similar distributed on the different pressure lay®nd observations have larger influence (0.4)
on the top of the atmosphere (above 400 hPa) than on the botter(0.2) due to the fact that there are
very few wind observations on the troposphere and lowetaspliere mainly over the oceans. At those
levels, temperature information is also provided by déférsatellite platforms (in terms of brightness
temperature or radiance). In Fi®.the Aircraft DFS with respect to different pressure levels and ob-
served parameters is shown. The largeSsin the lower troposphere (below 700 hPa) for temperature
measurements~(10% with respect to the total AircraldFS) with respect to wind ones is due to the
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Figure 3: Degree of Freedom for Signal (DFS) of all obsergat assimilated in the ECMWF 4DVar system in
October 2011. Observation types are described in Table

largest temperature influence. For all the other levelsXR8 is quite similar to theOl distribution
with the exception of the layer from 200 to 300 hPa where theemse te~50% is due to the increase of
number of observations assimilated. Fig@@nd7 shows the AMSU-AOI andDFS respectively, for all
the channels assimilated. A large part of the AMSU-A infotiovais with respect to stratospheric tem-
perature and the large®i at that atmospheric layer is from channel 9 and-0.4) (Fig.6). Channel 5
(~700 hPa) shows a very larged.8 Ol, the largest influence among all the channels. The reasdnsof t
large Ol is unclear, and investigation is in due course to underdiamdause. The channels observation
influence distribution is similar to thBFSdistribution (Fig.7): channel 9 and 10 count for 18% of the
AMSU-A DFS and channel 5 for 24%.

(b) Geographical map of Ol

The geographical map of Observation Influence for SYNOP aRtBDJ surface pressure observations
is shown in Fig8. Each box indicates the observation influence per observiication averaged among
all the October 2011 measurements. Data points with infligneater than one are due to the approxi-
mation of the computed diagonal elements of influence métee Cardinalet al, 2004 and Appendix
B).

Low-influence data points have large background influeneel¢and15), which is the case in data-rich
areas such as North America and Europe (observation infuef) (see also Sectidd(c)). In data-
sparse areas individual observations have larger influéndke Polar regions, where there are only few
isolated observations, ti@! is very high (theoretically-1) and the background has very small influence
on the analysis.

In dynamically active areas (Fi®: e.g. North Atlantic and North Pacific), several fairly istdd obser-
vations have large influence on the analysis. This is alsataltiee evolution of the background-error
covariance matrix as propagated by the forecast model iNa§Thpautet al. 1993, 1996). As a result,
the data assimilation scheme can fit these observations cluzely.
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Figure 4: Observation Influence (Ol) for Aircraft obsenaiis and for October 2011 grouped by pressure layer
and observed parameter. Parameters are temperature (t} tigey bar; meridional wind (v) dark grey bar and
zonal wind (u) black bar.
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Figure 5: Degree of Freedom for Signal (DFS) in percentageAucraft observations and for October 2011
grouped by pressure layer and observed parameter. Paramate temperature (t) light grey bar; meridional
wind (v) dark grey bar and zonal wind (u) black bar. The petege is relative to the total Aircraft DFS.
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Figure 6: Observation Influence (Ol) for AMSU-A observatiamd for October 2011 grouped by channels.

Similar features can be seen in F&.which shows the influence of u-component wind observations
Aircraft data above 400 hPa. Isolated flight tracks over #ttaand Pacific oceans show larger influ-
ences than measurements over data-dense areas over AaretiEairope. The flight tracks over North
Atlantic and North Pacific are also in dynamically activesarghere the background error variances are
implicitly inflated by the evolution of the background-errcovariance matrix in the 4D-Var window.
Figure10 shows the geographical distribution of AMSU-A channel 8aslsation influence. The largest
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Figure 7: Degree of Freedom for Signal in percentage (DF3)A®SU-A observations and for October 2011
grouped by channels. The percentage is relative to the fa#$U-A DFS.
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Figure 8: Observation Influence (Ol) of SYNOP and DRIBU stefaressure observations for October 2011. High
influential points are close to 1 and low influential pointg @itose to 0.
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Figure 9: Observation Influence (Ol) of Aircraft zonal windraponent above 400 hPa for October 2011. High
influential points are close to 1 and low influential pointe afose to 0.

influence is noticed in the extra-tropics and polar area&4) whilst in the tropics the maximu®@I is

~0.12. Since channel 8 observation error variances are ggbigally constant the main difference in
the observe®I pattern is likely due to thB covariance matrix. It looks that either the backgroundrerro
correlation are higher or the background error variancdaager in the tropics than in the extra-tropics.
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Figure 10: Observation Influence (Ol) of AMSU-A channel 8@atober 2011. High influential points are close
to 1 and low influential points are close to 0.

5 Conclusions

The influence matrix is a well-known concept in multi-vagidinear regression, where it is used to iden-
tify influential data and to predict the impact on the estesatf removing individual data from the re-
gression. In this paper the influence matrix in the contefinefr statistical analysis schemes has been
derived, as used for data assimilation of meteorologicakplations in numerical weather prediction
(Lorenc 1986). In particular an approximate method to campiue diagonal elements of the influence
matrix (the self-sensitivities or observation influenaeJEICMW(Fs operational data assimilation system
(4D-Var) has been derived and implemented. The approackssagdly approximates the solution due
to the large dimension of the estimation problem at handnthmber of estimated parameters is of the
order 10, and the number of observational data is aroune 2.

The self-sensitivity provides a quantitative measure efdhservation influence in the analysis. In ro-
bust regression, it is expected that the data have similaseesitivity (sometimes called leverage) - that
is, they exert similar influence in estimating the regraesgioe. Disproportionate data influence on the
regression estimate can have different reasons: Firsg th¢he inevitable occurrence of incorrect data.
Second, influential data points may be legitimately ocogréxtreme observations. However, even if
such data often contain valuable information, it is cortdive to determine to which extent the estimate
depends on these data. Moreover, diagnostics may revesl mitterns e.g. that the estimates are based
primarily on a specific sub-set of the data rather than on thjenity of the data.

In the context of 4D-Var there are many components that tegetetermine the influence given to any
one particular observation. First there is the specifiecdiafagion error covariancB, which is usually
well known and obtained simply from tabulated values. Sdgcdmere is the background error covari-
anceB, which is specified in terms of transformed variables thatrapst suitable to describe a large
proportion of the actual background error covariance. Tiygied covariance in terms of the observable
guantities is not immediately available for inspectiont, ibuletermines the analysis weight given to the
data. Third, the dynamics and the physics of the forecastehmmdpagate the covariance in time, and
modify it according to local error growth in the predictiomhe influence is further modulated by data
density. Examples for surface pressure and aircraft wirsgtisfations have been shown indicating that
low influence data points occur in data-rich areas while lvidluence data points are in data-sparse re-
gions or in dynamically active areas. Background erroradations also play an important role. In fact,
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very high correlations drastically lessen the observaitiflmence (it is halved in the idealized example
presented in Sectio®(c)) in favour of background influence and amplify the infloerf the surround-
ing observations. The observation influence pattern of AMSthannel 8 suggests some affectation of
the correlation expresses by tBecovariance matrix.

The global observation influence per assimilation cycle heen found to be 18%, and consequently
the background influence is 82%. Thus, on average the oliggrvafluence is low compared to the
influence of the background (the prior). However, it must d&leeh into account that the background
contains observation information from the previous analggcles. The theoretical information content
(the degrees of freedom for signal) for each of the main olbsien types was also calculated. It was
found that AMSU-A radiance data provide the most infornmratimthe analysis, followed by IASI, AIRS,
Aircraft, GPS-RO and TEMP. In total, about 20% of the obstowvel information is currently provided
by surface-based observing systems, and 80% by satelitersg. It must be stressed that this ranking is
not an indication of relative importance of the observingtegns for forecast accuracy. Nevertheless, re-
cent studies on the 24-hour observation impact on the fetedéh the adjoint methodology have shown
similar data ranking (Langland and Baker, 2004; Zhu and 861808; Cardinali 2009)

If the influence matrix were computed without approximatiban all the self-sensitivities would have
been bounded in the interval zero to one. With the approxdmuedthod used, out-of-bound self-sensitivities
occur if the Hessian representation based on an eigenrwgiansion is truncated, especially when few
eigen-vectors are used. However, it has been shown thairtitidem affects only a small percentage of
the self-sensitivities computed, and in particular thowse &re closer to one.

Self-sensitivities provide an objective diagnostic on pleeformance of the assimilation system. They
could be used in observation quality control to protect mgtailistortion by anomalous data; this aspect
has been explored by Jung al. (2009) in the context of Ensemble Kamlan Filter whereBhis well
known and the solution for the diagonal element of the Infbeematrix is therefore very accurate. Junjie
et al. (2009) have shown that the leaving-out-one observationpractical for large system dimension,
can be replaced by the Self-sensitivities (E9).that provide a similar diagnostic without performing
separate least square regressions. Self-sensitivisegpabvide indication on model and observation er-
ror specification and tuning. Incorrect specifications caidentified, interpreted and better understood
through observation influence diagnostics, partitiongd d&y observation types, variable, levels, and
regions.

In the near future more satellite data will be used and likedythinned. Thinning has to be performed
either to reduce the observation error spatial correlafi@ermannet al. 2003) or to reduce the com-
putational cost of the assimilation. The observation imfige provides an objective way of selecting
observations dependent on their local influence on the sisadgtimate to be used in conjunction with
forecast impact assessments. Recently, Batiat (2011) have shown that satellite measurements in
sensitive areas as defined by singular vectors methodolaggy larger impact in the forecast than mea-
surements in different regions and also larger or similgraiot than the full amount of data. In this case,
a dynamical thinning can be thought that selects, at evesiyndation cycle, the most influent measure-
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ments partition of a particular remote sensing instrumieoin information based on the previous cycle
(see also Rabieet al., 2002). Clearly, it can be assumed that components of tBereing network
remain constant and the background error variances rertmostunchanged for close assimilation cy-
cles.
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A Appendix: Influence Matrix Calculation in Weighted Regresson Data Assimilation
Scheme

Under the frequentist approach, the regression equatirabbervation
y=HO+¢, (A1)

and for background

are assumed to have uncorrelated error veatgrand €y, zero vector means and variance matriBes
andB, respectively. The parameter is the unknown system statef dimension n. These regression
equations are summarized as a weighted regression

Z=X0+¢ (A.3)

wherez = [y"x]|T is (m+n)x1; X = [HTI5]T is (m+n)xn ande = [gop]T is (M+n)x 1 with zero mean

Q 0 B (‘ \- I)

The generalized LS solution fé is BLUE and is given by
6=XTQ X)XTQ !z (A.5)
see Talagrand (1997). After some algebra this equationi®LE. Thus
z=X0=[H" X" =X(XTQ"IX)"IxTQ 1z (A.6)

and by 6) the influence matrix becomes

82_5_2 X6 /Sy Sp\ [ RIMHAHT R IHA A7)
7%z 0z \ Sy Sw /) \ BAHT B7!A '

whereSy, = 285 | 5, — §a; 5, — oa; 5, — 32 Note thatS,y=Sas defined in14).
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Generalized LS regression is different from ordinary LSdwse the influence matrix is not symmet-
ric anymore. For idempotence, usiAdl it easy to show that,.S,~=S,,. Finally,

Sop=B'A=1,—-HTRHA (A.8)
hence,
tr(Sep) =N—tr(H'R™*HA) = n—tr(Sy) (A.9)
it follows that
tr(Szz) =tr(Spy) +1r(Spp) =n (A.10)

The trace of the influence matrix is still equal to the parargetimension.

B Appendix: Approximate calculation of self-sensitivity in a large variational analysis
system

In a optimal variational analysis scheme, the analysisr @owariance matrbA is approximately the
inverse of the matrix of second derivatives (the Hessiath@tost function J, i.eA=(J")~* (Rabier and
Courtier, 1992). Given the large dimension of the matrioeslved,J and its inverse cannot be computed
explicitly. Following Fisher and Courtier (1995) we use gpm@ximate representation of the Hessian
based on a truncated eigen-vector expansion with vectdaénel through the Lanczos algorithm. The
calculations are performed in terms of a transformed véigby = L ~1(x — xp), with L chosen such
thatB—!=LTL. The transformatiot. thus reduces the covariance of the prior to the identity imaln
variational assimilation. is referred to as the change-of-variable operator (Couwgtial. 1998).

J”lzB—%l;—Ai(Lvi)(Lvi)T (B.1)

i=1 M
The summation irB.1 approximates the variance reductiBrRA due to the use of observations in the
analysis. A4j,vi) are the eigen-pairs d&k. The Hessian eigen-vectors are also used to precondit®n th
minimization (Fisher and Andersson, 2001). The computgdrevalues are not used to minimize the
cost function but only to estimate the analysis covarianegrira It is well known, otherwise, that the
minimization algorithm is analogous to the conjugate-gratlalgorithm. Because the minimum is found
within an iterative method, the operational number of iieres is sufficient to find the solution (with the
required accuracy) but does not provide a sufficient numbeigen-pairs to estimate the analysis error
variances.

The diagonal of the background error covariance mdrir B.1is also computed approximately, using
the randomisation method proposed by Fisher and Cour@®5)1 From a sample df random vectors

u; (in the space of the control-vectgr), drawn from a population with zero mean and unit Gaussian
variance, a low-rank representation®{in terms of the atmospheric state variables x) is obtained b

1 N -
B= Ni;(l-ui)(l—ui) (B.2)

This approximate representation Bfhas previously been used by Anderssoral. (2000) to diagnose
background errors in terms of observable quantitiesHRH T.
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InsertingB.1 andB.2 into (16) an approximate method for calculatifgs achieved, that is practical for
a large dimension variational assimilation (both 3D and\&D):

l;)“(Lvi)(Lvi)T]HT (B.3)

_p-1
S=RH| X

(Lui)(Lui)T —

2l

M=
M=

Only the diagonal elements &fare computed and stored - that is, the analysis sensisivitith respect

to the observations, or self-sensitivitieg. he cross-sensitivity;Sfor i#j, that represents the influence
of the {" observation to the analysis at th&Ibcation, is not computed. Note that the approximation of
the first term is unbiased, whereas the second term is teohcaich that variances are underestimated.
For small M the approximate;Svill tend to be over-estimates. For the extreme case M=CEES).@jives
S=RHBHT which in particular can have diagonal elements larger thamnibelements oHBHT are
larger than the corresponding element&ofl he effect of the approximation on the calculatgd/&lues

is investigated.

Approximations in both of the two terms dB(3) contribute to the problem. For the second term, the
degree of over-estimation depends on the structure of theriemce reduction matrii-A.

For an analysis in which observations lead to strongly isedlcovariance reduction (such as the surface

25

Number of Selfsensitivities >1
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Number of Hessian Vectors

Figure 11: Proportion of self-sensitivity values greatkah one (%) versus the number of Hessian vectors used to
compute the variances 8fA, using the approximate method describediB.

pressure analysis with its short co-variance length scall80 km, and large observational impacts) a
large M is required to approximai®-A accurately.

In Fig. 11, the proportion of observations for whick S1 is plotted versus M, the number of Hessian
vectors used. The plot shows a gradual decreasg oflSas M increases, as expected. The curve seems
to approach 10,000;S-1 (0.7% in the plot) for M somewhere between 1,000 and 2,0G8véver, in-
creasing the number of Hessian vectors slightly incredseaumber of self-sensitivities less than zero
(by 0.5%). This problem can be understood by looking at th@@pmations introduced through the
first term of B.3). The truncation N of the first term determines the randotiisasample size: larger

N leads to smaller noise. The noise is unbiased - that isgtine is neither over nor under-estimated on
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average. The randomisation noise in the diagonal elem&iigtie order 10% with N=50 (Andersseh
al. 2000). With N=500, values;s0 have all disappeared.
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