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Observation Influence

Summary

The influence matrix is used in ordinary least-squares applications for monitoring statistical multiple-
regression analyses. Concepts related to the influence matrix provide diagnostics on the influence of
individual data on the analysis, the analysis change that would occur by leaving one observation out, and
the effective information content (degrees of freedom for signal) in any sub-set of the analysed data. In
this paper, the corresponding concepts are derived in the context of linear statistical data assimilation in
Numerical Weather Prediction. An approximate method to compute the diagonal elements of the influ-
ence matrix (the self-sensitivities) has been developed for a large-dimension variational data assimilation
system (the 4D-Var system of the European Centre for Medium-Range Weather Forecasts). Results show
that, in the ECMWF operational system, 18% of the global influence is due to the assimilated observa-
tions, and the complementary 82% is the influence of the prior(background) information, a short-range
forecast containing information from earlier assimilatedobservations. About 20% of the observational
information is currently provided by surface-based observing systems, and 80% by satellite systems.

A toy-model is developed to illustrate how the observation influence depends on the data assimilation
covariance matrices. In particular, the role of high-correlated observation error and high-correlated back-
ground error with respect to uncorrelated ones is presented. Low-influence data points usually occur in
data-rich areas, while high-influence data points are in data-sparse areas or in dynamically active regions.
Background error correlations also play an important role:high correlation diminishes the observation in-
fluence and amplifies the importance of the surrounding real and pseudo observations (prior information
in observation space). To increase the observation influence in the presence of high correlated back-
ground error, it is necessary to also take the observation error correlation into consideration. However, if
the observation error variance is too large with respect to the background error variance the observation
influence will not increase. Incorrect specifications of thebackground and observation error covariance
matrices can be identified by the use of the influence matrix.

KEYWORDS: Observations Influence Data Assimilation Regression Methods

1 Introduction

Over the years, data assimilation schemes have evolved intovery complicated systems, such as the four-
dimensional variational system (4D-Var) (Rabieret al. 2000) at the European Centre for Medium-Range
Weather Forecasts (ECMWF). The scheme handles a large variety of both space and surface-based me-
teorological observations. It combines the observations with prior (or background) information of the
atmospheric state and uses a comprehensive (linearized) forecast model to ensure that the observations
are given a dynamically realistic, as well as statisticallylikely response in the analysis.

Effective monitoring of such a complex system, with the order of 109 degrees of freedom and more
than 107 observations per 12-hour assimilation cycle, is a necessity. The monitoring cannot be restricted
to just a few indicators, but a complex set of measures is needed to indicate how different variables and
regions influence the data assimilation (DA) scheme. Measures of the observational influence are useful
for understanding the DA scheme itself: How large is the influence of the latest data on the analysis
and how much influence is due to the background? How much wouldthe analysis change if one single
influential observation were removed? How much informationis extracted from the available data? It is
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the aim of this work to provide such analytical tools.

We turn to the diagnostic methods that have been developed for monitoring statistical multiple regression
analyses. In fact, 4D-Var is a special case of the Generalized Least Square (GLS) problem (Talagrand,
1997) for weighted regression, thoroughly investigated inthe statistical literature.

The structure of many regression data sets makes effective diagnosis and fitting a delicate matter. In
robust (resistant) regression, one specific issue is to provide protection against distortion by anomalous
data. In fact, a single unusual observation can heavily distort the results of ordinary (non-robust) LS
regression (Hoaglinet al. 1982). Unusual or influential data points are not necessarily bad data points:
they may contain some of the most useful sample information.For practical data analysis, it helps to
judge such effects quantitatively. A convenient diagnostic measures the effect of a (small) change in
the observationyi on the corresponding predicted (estimated) value ˆyi . In LS regression this involves a
straightforward calculation: any change inyi has a proportional impact on ˆyi . The desired information
is available in the diagonal of thehat matrix (Velleman and Welsh, 1981), which gives the estimated
values ˆyi as a linear combination of the observed valuesyi . The termhat matrixwas introduced by J.W.
Tukey (Tukey, 1972) because the matrix maps the observationvectory into ŷ, but it is also referred to as
the influence matrixsince its elements indicate the data influence on the regression fit of the data. The
matrix elements have also been referred to as theleverageof the data points: in case of highleverage
a unit y-value will highly disturb the fit (Hoaglin and Welsh,1978). Concepts related to the influence
matrix also provide diagnostics on the change that would occur by leaving one data point out, and the
effective information content (degrees of freedom for signal) in the data.

These influence matrix diagnostics are explained in Section2 for ordinary least-squares regression. In
Section 3 the corresponding concepts for linear statistical DA schemes is derived. It will be shown that
observational influence and background influence complement each other. Thus, for any observationyi

either very large or very small influence could be the sign of inadequacy in the assimilation scheme,
and may require further investigation. A practical approximate method that enables calculation of the
diagonal elements of the influence matrix for large-dimension variational schemes (such as ECMWFs
operational 4D-Var system) is described in Cardinaliet al 2004 and therefore not shown here. In Sec-
tion 4 results and selected examples related to data influence diagnostics are presented, including an
investigation into the effective information content in several of the main types of observational data.
Conclusions are drawn in Section 5.

2 Classical Statistical Definitions of Influence Matrix and Self-Sensitivity

The ordinary linear regression model can be written:

y = Xβ + ε (1)

wherey is anm×1 vector for the response variable (predictand);X is anm×q matrix ofq predictors;β is
aq×1 vector of parameters to be estimated (the regression coefficients) andε is anm×1 vector of errors
(or fluctuations) with expectation E(ε)=0 and covariance var(ε)=σ2Im (that is, uncorrelated observation
errors). In fitting the model (1) by LS, the number of observationsm has to be greater than the number
of parametersq in order to have a well-posed problem, andX is assumed to have full rankq.
The LS method provides the solution of the regression equation as
β = (XTX)−1XTy. The fitted (or estimated) response vector is thus:

ŷ = Sy (2)

2 Lecture Notes: Data Assimilation



Observation Influence

where
S= X(XTX)−1XT (3)

is them×m influence matrix(or hat matrix). It is easily seen that

S=
δ ŷ
δy

(4)

and that

Si j =
δ ŷi

δy j

Sii =
δ ŷi

δyi
(5)

for the off-diagonal (i6=j) and the diagonal (i=j ) elements, respectively. Thus, Si j is the rate of change
of ŷi with respect toy j variations. The diagonal element Sii instead, measures the rate of change of the
regression estimate ˆyi with respect to variations in the corresponding observation yi . For this reason the
self-sensitivity(or self-influence, or leverage) of theith data point is theith diagonal element Sii , while an
off-diagonal element is across-sensitivitydiagnostic between two data points. Hoaglin and Welsh (1978)
discuss some properties of the influence matrix. The diagonal elements satisfy:

0≤ Sii ≤ 1

i = 1,2, . . . ,m (6)

asS is a symmetric and idempotent projection matrix (S=S2). The covariance of the error in the estimate
ŷ , and the covariance of the residualr=y-ŷ are related toSby

var(ŷ) = σ2S

var(r) = σ2(Im−S) (7)

The trace of the influence matrix is:

tr(S) =
m

∑
i=1

Sii = q = rank(S) (8)

(in fact S hasm eigenvalues equals to 1 andm-q zeros). Thus, the trace is equal to the number of
parameters. The trace can be interpreted as the amount of information extracted from the observations
or degrees of freedom for signal(Wahbaet al. 1995). The complementary trace,tr(I-S)=m-tr(S) , on the
other hand, is the degree of freedom for noise, or simply the degree of freedom (df) of the error variance,
widely used for model checking (F test).
A zero self-sensitivity Sii =0 indicates that theith observation has had no influence at all in the fit, while
Sii =1 indicates that an entire degree of freedom (effectively one parameter) has been devoted to fitting
just that data point. The average self-sensitivity value isq/mand an individual element Sii is considered
‘large’ if its value is greater than three times the average (Velleman and Welsh, 1981). By a symmetrical
argument a self-sensitivity value that is less than one-third of the average is considered ‘small’.
Furthermore, the change in the estimate that occurs when theith observation is deleted is

ŷi − ŷi
(−i) =

Sii

(1−Sii )
r i (9)
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where ˆyi
(−i) is the LS estimate of yi obtained by leaving-out the ith observation of the vectory and the

ith row of the matrixX. The method is useful to assess the quality of the analysis byusing the discarded
observation, but impractical for large systems. The formula shows that the impact of deleting (yi ,xi)
on ŷi can be computed by knowing only the residualr i and the diagonal element Sii - the nearer the
self-sensitivity Sii is to one, the more impact on the estimate ˆyi . A related result concerns the so-called
cross-validation (CV) score: that is, the LS objective function obtained when each data point is in turn
deleted (Whaba, 1990, theorem 4.2.1):

m

∑
i=1

(yi − ŷi
(−i))2 =

m

∑
i=1

(yi − ŷi)
2

(1−Sii )2 (10)

This theorem shows that the CV score can be computed by relying on the all-data estimatêy and the
self-sensitivities, without actually performingmseparate LS regressions on the leaving-out-one samples.
Moreover, (9) shows how to compute self-sensitivities by the leaving-out-one experiment.
The definitions of influence matrix (4) and self-sensitivity (5) are rather general and can be applied also
to non-LS and nonparametric statistics. In spline regression, for example, the interpretation remains
essentially the same as in ordinary linear regression and most of the results, like the CV-theorem above,
still apply. In this context, Craven and Wahba (1979) proposed the generalized-CV score, replacing in
(10) Sii by the meantr(S)/q. For further applications of influence diagnostics beyond usual LS regression
(and further references) see Ye (1998) and Shenet al. (2002). The notions related to the influence matrix
that it has introduced here will in the following section be derived in the context of a statistical analysis
scheme used for data assimilation in numerical weather prediction (NWP).

3 Observational Influence and Self-Sensitivity for a DA Scheme

(a) Linear statistical estimation in Numerical Weather Prediction

Data assimilation systems for NWP provide estimates of the atmospheric statex by combining meteo-
rological observationsy with prior (or background) informationxb. A simple Bayesian Normal model
provides the solution as the posterior expectation forx, given y and xb. The same solution can be
achieved from a classicalfrequentistapproach, based on a statistical linear analysis scheme providing
the Best Linear Unbiased Estimate (Talagrand, 1997) ofx, giveny andxb. The optimal GLS solution to
the analysis problem (see Lorenc, 1986) can be written

xa = Ky +(In−KH )xb (11)

The vectorxa is the ‘analysis’. The gain matrixK (n×m) takes into account the respective accuracies of
the background vectorxb and the observation vectory as defined by then×n covariance matrixB and
them×mcovariance matrixR, with

K = (B−1+HTR−1H)−1HTR−1 (12)

Here,H is a m×n matrix interpolating the background fields to the observation locations, and trans-
forming the model variables to observed quantities (e.g. radiative transfer calculations transforming the
models temperature, humidity and ozone into brightness temperatures as observed by several satellite
instruments). In the 4D-Var context introduced below,H is defined to include also the propagation in
time of the atmospheric state vector to the observation times using a forecast model. Substituting (12)
into (??) and projecting the analysis estimate onto the observationspace, the estimate becomes

ŷ = Hxa = HKy +(Im−HK )Hxb (13)
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It can be seen that the analysis state in observation space (Hxa) is defined as a sum of the background (in
observation space,Hxb) and the observationsy, weighted by them×m square matricesI-HK andHK ,
respectively.
Equation (13) is the analogue of (1), except for the last term on the right hand side. In this case, for
each unknown component ofHx, there are two data values: a real and a ‘pseudo’ observation. The
additional term in (13) includes these pseudo-observations, representing priorknowledge provided by
the observation-space backgroundHxb. From (13) and (4), the analysis sensitivity with respect to the
observations is obtained

S=
δ ŷ
δy

= KTHT (14)

Similarly, the analysis sensitivity with respect to the background (in observation space) is given by

δ ŷ
δ (Hxb)

= I −KTHT = Im −S (15)

Lets focus here on the expressions (14) and (15). The influence matrix for the weighted regression DA
scheme is actually more complex (see Appendix 1), but it obscures the dichotomy of the sensitivities
between data and model in observation space.

The (projected) background influence is complementary to the observation influence. For example, if the
self-sensitivity with respect to the ith observation is Sii , the sensitivity with respect the background pro-
jected at the same variable, location and time will be simply1-Sii . It also follows that the complementary
trace, tr(I-S)=m-tr(S), is not thedf for noise but for background, instead. That is the weight given to
prior information, to be compared to the observational weight tr(S). These are the main differences with
respect to standard LS regression. Note that the different observations can have different units, so that
the units of the cross-sensitivities are the correspondingunit ratios. Self-sensitivities, however, are pure
numbers (no units) as in standard regression. Finally, as long asR is diagonal, (6) is assured (see Section
3(b)), but for more general non-diagonalR-matrices it is easy to find counter-examples to that property.
Inserting (12) into (14), we obtain

S= R−1H(B−1+HTR−1H)−1HT (16)

As (B−1+HTR−1H)−1 is equal to the analysis error covariance matrixA, we can also writeS =
R−1HAH T.

(b) R diagonal

In this section it is shown that as long asR is diagonal (6) is satisfied. Equation (16) can be written as

S= R−1H[B−BHT(HBHT +R)−1HB]HT

= R−1HBHT −R−1HBHT(HBHT +R)−1HBHT (17)

Lets introduce the matrixV=HBH T, (17) becomes
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S= R−1V −R−1V(V +R)−1V

= R−1V[I − (V +R)−1V]

= R−1V[(V +R)−1(V +R)− (V +R)−1V]

= R−1V(V +R)−1R

= R−1[(V +R)(V +R)−1−R(V +R)−1]R

= R−1[I −R(V +R)−1]R

= I − (V +R)−1R

= (V +R)−1V (18)

SinceV andR are positive definite covariance matrices, the matrix (V+R) is positive definite as well. In
fact by definition for a non-zero vectorsz with real entries the quantityzT(V +R)z= zTVz+zTRz > 0.
Lets consider the following theorem: IfD is positive definite matrix thenD−1 is positive definite and
definingD−1={δi j } , D={di j } we have:δii ≥ 1/dii where the equality holds if and only ifdi1 = .. =
dii−1 = dii+1 = .. = din=0.
The diagonal elements ofD−1=(V+R)−1={δi j } are then larger than the diagonal elements of (V+R).
Moreover, ifV={vi j } andR=diag(r i ) we obtain

δii ≥
1

vii + r i
(19)

And since thei-diagonal element of(V+R)−1R is (δi1, . . . ,δin)

















0
...
r i
...
0

















= δii r i

δii r i ≥
r i

vii + r i
(20)

From (18) considering that the product of two positive definite matrix is still a positive definite matrix

0 < Sii = 1−δii r i ≤ 1−
r i

vii + r i
=

vii

vii + r i
< 1 (21)

(21) proves that the diagonal elements of the influence matrix for the weighted regression DA scheme
are bound between (0,1).

(c) Toy model

Lets assume a simplified model with two observations, each coincident with a point of the background
- that isH=I 2. Assume the error of the background at the two locations havecorrelationα , that is /

B=σ2
b

(

1 α
α 1

)

, with varianceσ2
b , and that similarlyR=σ2

o

(

1 β
β 1

)

with varianceσ2
o and correla-

tion β . For this simple caseS is obtained from (14)
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S11 = S22 =
σ2

bσ2
o(1−αβ )+ σ4

b(1−α2)

σ4
b(1−α2)+ σ4

o(1−β 2)+2σ2
bσ2

o(1−αβ )
(22)

S12 = S21 =
σ2

bσ2
o(α −β )

σ4
b(1−α2)+ σ4

o(1−β 2)+2σ2
bσ2

o(1−αβ )
(23)

For α 6= ±1 andβ 6= ±1 (R andB are full rank matrices). Lets definer = σ2
o/σ2

b , (22) and (23) reduce
too

S11 = S22 =
r(1−αβ )+1−α2

r2(1−β 2)+1−α2+2r(1−αβ )
(24)

S12 = S21 =
r(α −β )

r2(1−β 2)+1−α2+2r(1−αβ )
(25)

Figure1 shows the diagonal elements of the influence matrix as a function of r,Sii = Sii (r) (Eq. 24).
From now on, Sii is also indicated as Observation Influence (OI). In general,the observation influence
decreases with the increase ofr. For highly correlated (α = 0.9, β = 0.9) and diagonal(α = 0,β = 0)
R andB matrices, the observation influence as a function ofr is the same (solid grey line and dash thick
line, respectively). Maximum observation influence is achieved whenB is diagonal(α = 0) andR is
highly correlated(β = 0.9) (thin black line). The observation influence will constantly decrease from the
‘maximum curve’ with the decrease of the correlation degreein R (B still diagonal). And the minimum
observation influence curve is achieved whenR is diagonal(β = 0) andB is highly correlated(α = 0.9)
(thick solid line). It is worth to notice that if the observation error variance is larger than the background
error variance(σ2

o > σ2
b) introducing the observation error correlation will slightly increase the observa-

tion influence and forσ2
o ≫ σ2

b the observations will not be more influent in the analysis despite R is not
diagonal.

(i) R diagonal andB non-diagonal(α 6= 0,β = 0). Equations (24) and (25) reduce respectively to

S11 = S22 =
r +1−α2

r2 +1−α2+2r
(26)

S12 = S21 =
rα

r2 +1−α2+2r
(27)

It can be seen that if the observations are very close (compared to the scale-length of the background
error correlation), i.eα ∼1 (data dense area), then

S11 = S22 = S12 = S21
∼=

1
r +2

(28)

Furthermore, ifσb = σo, that isr = 1, we have three pieces of information with equal accuracy and S11 =
S22 = 1/3. The background sensitivity at both locations is 1−S11 = 1−S22 = 2/3. If the observation is
much more accurate than the background (σb ≫ σo), that isr ∼ 0, then both observations have influence
S11 = S22 = 1/2, and the background sensitivities are 1−S11 = 1−S22 = 1/2.
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Lets now turn to the dependence on the background-error correlationα , for the caseσb = σo (r = 1). It
is

S11 = S22 =
2−α2

4−α2 (29)

S12 = S21 =
α

4−α2 (30)

If the locations are far apart, such thatα ∼ 0, thenS11 = S22 = 1/2, the background sensitivity is also
1
2 andS12 = S21 = 0. It can be concluded that where observations are sparse,Sii and the background-
sensitivity are determined by their relative accuracies (r) and the off-diagonal terms are small (indicating
that surrounding observations have small influence). Conversely, where observations are dense, Sii tends
to be small, the background-sensitivities tend to be large and the off-diagonal terms are also large.
It is also convenient to summarize the caseσb = σo (r = 1) by showing the projected analysis at location
1

ŷ1 =
1

4−α2 [(2−α2)y1 +2x1−α(x2−y2)] (31)

The estimate ˆy1 depends ony1, x1 and an additional term due to the second observation. It is noticed that,
with a diagonalR, the observational contribution is generally devalued with respect to the background
because a group of correlated background values count more than the single observation[α →±1, (2−
α2)→ 1]. From the expression above we also see that the contribution from the second observation is in-
creasing with the correlations absolute value, implying a larger contribution due to the background x2 and observation y

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

O
I

r

a=0.9, b=0 a=0.9, b=0.9 a=0, b=0 a=0, b=0.9

Figure 1: Self-Sensitivities or Observation Influence (OI)as a function of the ratio between the observation error
variance and the background error variance. Four differentcases are shown: highly correlatedB and uncorrelated
R (thick black line). Highly correlatedR and highly correlatedB (thick grey line). UncorrelatedB and highly
correlatedR (thin grey line). UncorrelatedR and uncorrelatedB (dashed black line).

4 Results

The diagonal elements of the influence matrix have been computed for the operational 4D-Var assimila-
tion system at T159 spectral truncation 91 model levels for October 2011. For the calculation details see
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Cardinaliet al2004 and Appendix B. The observation departures(y-Hxb) were calculated by comparing
the observations with a 12-hour forecast integration at T511 resolution. The assimilated observations for
each main observation type are given in Table1. A large proportion∼ (98%) of the used data is provided
by satellite systems.

(a) Trace diagnostic: Observation Influence and DFS

The global average Observation Influence (OI) is defined as

OI =
tr(S)

p
(32)

wherem is the total number of observations. For October 2011 OI=0.18. Consequently, the average
background global influence to the analysis at observation points is equal to 0.82 (see15). It is clear that
in the ECMWF system the global observation influence is quitelow.

In Fig. 2 theOI for the all different observation types is plotted. In general, OI of conventional observa-
tions (SYNOP, DRIBU, PROFILER, PILOT, DROP, TEMP, Aircraft) is larger than the satellite one. The
largestOI is provided by DRIBU surface pressure observations becausethey are located over the oceans
that are in general very poor observed (less than continental areas). Moreover, DRIBU and SYNOP ob-
servations are very high quality measurements and the observation error variances is quite small, likely
smaller than the background error variance (see ‘toy model’in section3 (c)). Similarly, theOI∼0.4-0.5
of the remaining conventional data is due to their quite small observation error variance. In Section3 (c)
it has been proved that if R is diagonal theOI is bounded between (0,1) but from Fig.2, we can see that
DRIBU OI is higher than 1. This is due to the approximation of the numerical solution and, in particular,
the use in the influence matrix calculation of an estimate of the analysis covariance matrix A (see Cardi-
nali et al 2004 for details). On the contrary, theOI influence of satellite data is quite small. The largest
influence is provided by GPS-RO observations (∼0.4) which again are accurate data and likely with un-
correlated observation error (Healy and Thpaut 2006), followed by AMSU-A measurements (∼0.3). All
the other observations have an influence of about 0.2. Recently, changes in the assimilation of ‘All-Sky’
observations (TMI and SSMIS) have increased their influencein the analysis (Cardinali and Prates 2011,
Geeret al 2011)

In Section2 it has been shown that tr(S) can be interpreted as a measure of the amount of informa-
tion extracted from the observations. In fact, in non-parametric statistics, tr(S) measures the ‘equivalent
number of parameters’ ordegrees of freedom for signal (DFS). Having obtained values of all the diag-
onal elements ofS (using16) we can now obtain reliable estimates of the information content in any
subset of the observational data. However, it must be noted that this theoretical measure of information
content does not necessarily translate on value of forecastimpact. Figure3 shows the information con-
tent for all main observation types. It can be seen that AMSU-A radiances are the most informative data
type, providing 23% of the total observational information, IASI follows with 17% and AIRS with 16%.
The information content of Aircraft (10%) is the largest among conventional observations, followed by
TEMP and SYNOP (∼4%). Noticeable is the 7% of GPS-RO (4th in the satelliteDFSranking) that well
combines with the 0.4 value for the average observation influence. In general, the importance of the
observations as defined by e.g. theDFSwell correlates with the recent data impact studies by Radnoti et
al, (2010).

Lecture Notes: Data Assimilation 9
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Data
name

Data kind Information

OZONE
(O3)

Backscattered solar UV radiation, re-
trievals

Ozone, stratosphere

GOES-
Radiance

US geostationary satellite infrared
sounder radiances

Moisture, mid/upper troposphere

MTSAT-
Rad

Japanese geostationary satellite in-
frared sounder radiances

Moisture, mid/upper troposphere

MET-rad EUMETSAT geostationary satellite in-
frared sounder radiances

Moisture, mid/upper troposphere

AMSU-B Microwave sounder radiances Moisture, troposphere
MHS Microwave sounder radiances Moisture, troposphere
MERIS Differential reflected solar radiation,

retrievals
Total column water vapour

GPS-RO GPS radio occultation bending anglesTemperature, surface pressure
IASI Infrared sounder radiances Temperature, moisture, ozone
AIRS Infrared sounder radiances Temperature, moisture, ozone
AMSU-
A

Microwave sounder radiances Temperature

HIRS Infrared sounder radiances Temperature, moisture, ozone
ASCAT Microwave scatterometer backscatter

coefficients
Surface wind

MODIS-
AMV

US polar Atmospheric Motion Vectors,
retrievals

Wind, troposphere

Meteosat-
AMV

EUMETSAT geostationary Atmo-
spheric Motion Vectors, retrievals

Wind, troposphere

MTSAT-
AMV

Japanese geostationary Atmospheric
Motion Vectors, retrievals

Wind, troposphere

GOES-
AMV

US geostationary Atmospheric Motion
Vectors, retrievals

Wind, troposphere

PROFILERAmerican, European and Japanese
Wind profiles

Wind, troposphere

PILOT Radiosondes at significant level from
land stations

Wind, troposphere

DROP Dropsondes from aircrafts Wind, temperature, moisture, pressure,
troposphere

TEMP Radiosondes from land and ships Wind, temperature, moisture, pressure,
troposphere

Aircraft Aircraft measurements Wind, temperature, troposphere
DRIBU Drifting buoys Surface pressure, temperature, mois-

ture, wind
SYNOP Surface Observations at land stations

and on ships
Surface pressure, temperature, mois-
ture, wind

Table 1: Observation type assimilated on October 2011. The total number of data in one assimilation cycle is on
average m∼25,000,000.
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Similar information content of different observation types may be due to different reasons. For example,
DRIBU and OZONE information content is similarly small but whilst OZONE observations have a very
small average influence (Fig.2) and dense data coverage, DRIBU observations have large mean influence
but much lower data counts (Fig.2). Anyhow, the OZONE data are important for the ozone assimilation
in spite of their low information content per analysis cycle. In fact, OZONE is generally a long-lived
species, which allows observational information to be advected by the model over periods of several days.

The difference betweenOI and DFS comes from the number of observation assimilated. Therefore,
despite the generally low observation influence of satellite measurements, they show quite largeDFS
because of the large number assimilated. A large discrepancy betweenOI andDFSpoints on those ob-
servation types where a revision of the assigned covariancematricesR andB will be beneficial: more
information extracted from e.g. satellite measurements.
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Figure 2: Observation Influence (OI) of all assimilated observations in the ECMWF 4DVar system in October
2011. Observation types are described in Table1.

Another index of interest is the partial Observation Influence (OIp) for any selected subset of data

OIp =
∑i⊂I Sii

pI
(33)

where pI is the number of data in subsetI. The subsetI can represent a specific observation type, a
specific vertical or horizontal domain or a particular meteorological variable. In Fig.4 theOI of Aircraft
data (I ) is plotted as a function of pressure layers and for all observed parameters: temperature (t), zonal
(u) and meridional (v) component of the wind. The largestOI is provided by temperature observations
(∼0.4) similar distributed on the different pressure layers.Wind observations have larger influence (0.4)
on the top of the atmosphere (above 400 hPa) than on the bottomone (0.2) due to the fact that there are
very few wind observations on the troposphere and lower stratosphere mainly over the oceans. At those
levels, temperature information is also provided by different satellite platforms (in terms of brightness
temperature or radiance). In Fig.5 the Aircraft DFS with respect to different pressure levels and ob-
served parameters is shown. The largestDFS in the lower troposphere (below 700 hPa) for temperature
measurements (∼10% with respect to the total AircraftDFS) with respect to wind ones is due to the
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Figure 3: Degree of Freedom for Signal (DFS) of all observations assimilated in the ECMWF 4DVar system in
October 2011. Observation types are described in Table1.

largest temperature influence. For all the other levels, theDFS is quite similar to theOI distribution
with the exception of the layer from 200 to 300 hPa where the increase to∼50% is due to the increase of
number of observations assimilated. Figure6 and7 shows the AMSU-AOI andDFS, respectively, for all
the channels assimilated. A large part of the AMSU-A information is with respect to stratospheric tem-
perature and the largestOI at that atmospheric layer is from channel 9 and 10 (∼0.4) (Fig.6). Channel 5
(∼700 hPa) shows a very large∼0.8OI, the largest influence among all the channels. The reason of this
largeOI is unclear, and investigation is in due course to understandthe cause. The channels observation
influence distribution is similar to theDFSdistribution (Fig.7): channel 9 and 10 count for 18% of the
AMSU-A DFS and channel 5 for 24%.

(b) Geographical map of OI

The geographical map of Observation Influence for SYNOP and DRIBU surface pressure observations
is shown in Fig.8. Each box indicates the observation influence per observation location averaged among
all the October 2011 measurements. Data points with influence greater than one are due to the approxi-
mation of the computed diagonal elements of influence matrix(see Cardinaliet al, 2004 and Appendix
B).

Low-influence data points have large background influence (see14and15), which is the case in data-rich
areas such as North America and Europe (observation influence∼0.2) (see also Section3 (c)). In data-
sparse areas individual observations have larger influence: in the Polar regions, where there are only few
isolated observations, theOI is very high (theoretically∼1) and the background has very small influence
on the analysis.
In dynamically active areas (Fig.8: e.g. North Atlantic and North Pacific), several fairly isolated obser-
vations have large influence on the analysis. This is also dueto the evolution of the background-error
covariance matrix as propagated by the forecast model in 4D-Var (Thpautet al. 1993, 1996). As a result,
the data assimilation scheme can fit these observations moreclosely.
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Figure 4: Observation Influence (OI) for Aircraft observations and for October 2011 grouped by pressure layer
and observed parameter. Parameters are temperature (t) light grey bar; meridional wind (v) dark grey bar and
zonal wind (u) black bar.
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Figure 5: Degree of Freedom for Signal (DFS) in percentage for Aircraft observations and for October 2011
grouped by pressure layer and observed parameter. Parameters are temperature (t) light grey bar; meridional
wind (v) dark grey bar and zonal wind (u) black bar. The percentage is relative to the total Aircraft DFS.
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Figure 6: Observation Influence (OI) for AMSU-A observations and for October 2011 grouped by channels.

Similar features can be seen in Fig.9, which shows the influence of u-component wind observationsfor
Aircraft data above 400 hPa. Isolated flight tracks over Atlantic and Pacific oceans show larger influ-
ences than measurements over data-dense areas over Americaand Europe. The flight tracks over North
Atlantic and North Pacific are also in dynamically active areas where the background error variances are
implicitly inflated by the evolution of the background-error covariance matrix in the 4D-Var window.
Figure10 shows the geographical distribution of AMSU-A channel 8 observation influence. The largest
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Figure 7: Degree of Freedom for Signal in percentage (DFS) for AMSU-A observations and for October 2011
grouped by channels. The percentage is relative to the totalAMSU-A DFS.
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Figure 8: Observation Influence (OI) of SYNOP and DRIBU surface pressure observations for October 2011. High
influential points are close to 1 and low influential points are close to 0.
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Figure 9: Observation Influence (OI) of Aircraft zonal wind component above 400 hPa for October 2011. High
influential points are close to 1 and low influential points are close to 0.

influence is noticed in the extra-tropics and polar areas (∼0.4) whilst in the tropics the maximumOI is
∼0.12. Since channel 8 observation error variances are geographically constant the main difference in
the observedOI pattern is likely due to theB covariance matrix. It looks that either the background error
correlation are higher or the background error variance arelarger in the tropics than in the extra-tropics.
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Figure 10: Observation Influence (OI) of AMSU-A channel 8 forOctober 2011. High influential points are close
to 1 and low influential points are close to 0.

5 Conclusions

The influence matrix is a well-known concept in multi-variate linear regression, where it is used to iden-
tify influential data and to predict the impact on the estimates of removing individual data from the re-
gression. In this paper the influence matrix in the context oflinear statistical analysis schemes has been
derived, as used for data assimilation of meteorological observations in numerical weather prediction
(Lorenc 1986). In particular an approximate method to compute the diagonal elements of the influence
matrix (the self-sensitivities or observation influence) in ECMWFs operational data assimilation system
(4D-Var) has been derived and implemented. The approach necessarily approximates the solution due
to the large dimension of the estimation problem at hand: thenumber of estimated parameters is of the
order 109, and the number of observational data is around 25×106.

The self-sensitivity provides a quantitative measure of the observation influence in the analysis. In ro-
bust regression, it is expected that the data have similar self-sensitivity (sometimes called leverage) - that
is, they exert similar influence in estimating the regression line. Disproportionate data influence on the
regression estimate can have different reasons: First, there is the inevitable occurrence of incorrect data.
Second, influential data points may be legitimately occurring extreme observations. However, even if
such data often contain valuable information, it is constructive to determine to which extent the estimate
depends on these data. Moreover, diagnostics may reveal other patterns e.g. that the estimates are based
primarily on a specific sub-set of the data rather than on the majority of the data.

In the context of 4D-Var there are many components that together determine the influence given to any
one particular observation. First there is the specified observation error covarianceR, which is usually
well known and obtained simply from tabulated values. Second, there is the background error covari-
anceB, which is specified in terms of transformed variables that are most suitable to describe a large
proportion of the actual background error covariance. The implied covariance in terms of the observable
quantities is not immediately available for inspection, but it determines the analysis weight given to the
data. Third, the dynamics and the physics of the forecast model propagate the covariance in time, and
modify it according to local error growth in the prediction.The influence is further modulated by data
density. Examples for surface pressure and aircraft wind observations have been shown indicating that
low influence data points occur in data-rich areas while highinfluence data points are in data-sparse re-
gions or in dynamically active areas. Background error correlations also play an important role. In fact,
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very high correlations drastically lessen the observationinfluence (it is halved in the idealized example
presented in Section3 (c)) in favour of background influence and amplify the influence of the surround-
ing observations. The observation influence pattern of AMSU-A channel 8 suggests some affectation of
the correlation expresses by theB covariance matrix.

The global observation influence per assimilation cycle hasbeen found to be 18%, and consequently
the background influence is 82%. Thus, on average the observation influence is low compared to the
influence of the background (the prior). However, it must be taken into account that the background
contains observation information from the previous analysis cycles. The theoretical information content
(the degrees of freedom for signal) for each of the main observation types was also calculated. It was
found that AMSU-A radiance data provide the most information to the analysis, followed by IASI, AIRS,
Aircraft, GPS-RO and TEMP. In total, about 20% of the observational information is currently provided
by surface-based observing systems, and 80% by satellite systems. It must be stressed that this ranking is
not an indication of relative importance of the observing systems for forecast accuracy. Nevertheless, re-
cent studies on the 24-hour observation impact on the forecast with the adjoint methodology have shown
similar data ranking (Langland and Baker, 2004; Zhu and Gelaro 2008; Cardinali 2009)

If the influence matrix were computed without approximationthen all the self-sensitivities would have
been bounded in the interval zero to one. With the approximate method used, out-of-bound self-sensitivities
occur if the Hessian representation based on an eigen-vector expansion is truncated, especially when few
eigen-vectors are used. However, it has been shown that thisproblem affects only a small percentage of
the self-sensitivities computed, and in particular those that are closer to one.

Self-sensitivities provide an objective diagnostic on theperformance of the assimilation system. They
could be used in observation quality control to protect against distortion by anomalous data; this aspect
has been explored by Junjieet al. (2009) in the context of Ensemble Kamlan Filter where theB is well
known and the solution for the diagonal element of the Influence matrix is therefore very accurate. Junjie
et al. (2009) have shown that the leaving-out-one observation, not practical for large system dimension,
can be replaced by the Self-sensitivities (Eq.9) that provide a similar diagnostic without performing
separate least square regressions. Self-sensitivities also provide indication on model and observation er-
ror specification and tuning. Incorrect specifications can be identified, interpreted and better understood
through observation influence diagnostics, partitioned e.g. by observation types, variable, levels, and
regions.

In the near future more satellite data will be used and likelybe thinned. Thinning has to be performed
either to reduce the observation error spatial correlation(Bormannet al. 2003) or to reduce the com-
putational cost of the assimilation. The observation influence provides an objective way of selecting
observations dependent on their local influence on the analysis estimate to be used in conjunction with
forecast impact assessments. Recently, Baueret al (2011) have shown that satellite measurements in
sensitive areas as defined by singular vectors methodology have larger impact in the forecast than mea-
surements in different regions and also larger or similar impact than the full amount of data. In this case,
a dynamical thinning can be thought that selects, at every assimilation cycle, the most influent measure-
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ments partition of a particular remote sensing instrument,from information based on the previous cycle
(see also Rabieret al., 2002). Clearly, it can be assumed that components of the observing network
remain constant and the background error variances remain almost unchanged for close assimilation cy-
cles.
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A Appendix: Influence Matrix Calculation in Weighted Regression Data Assimilation
Scheme

Under the frequentist approach, the regression equations for observation

y = Hθ + εo (A.1)

and for background
xb = θ + εb (A.2)

are assumed to have uncorrelated error vectorsεo andεb, zero vector means and variance matricesR
andB, respectively. The parameter is the unknown system state (x) of dimension n. These regression
equations are summarized as a weighted regression

z = Xθ + ε (A.3)

wherez = [yTxT
b ]T is (m+n)×1 ; X = [HTIn]

T is (m+n)×n andε = [εoεb]
T is (m+n)×1 with zero mean

and variances matrix

Ω =

(

R 0
0 B

)

(A.4)

The generalized LS solution forθ is BLUE and is given by

θ̂ = (XTΩ−1X)XTΩ−1z (A.5)

see Talagrand (1997). After some algebra this equation equals (11). Thus

z = Xθ̂ = [HTxT
a xT

a ]T = X(XTΩ−1X)−1XTΩ−1z (A.6)

and by (5) the influence matrix becomes

Szz =
δ ẑ
δz

=
δXθ̂
δz

=

(

Syy Syb

Sby Sbb

)

=

(

R−1HAH T R−1HA
B−1AHT B−1A

)

(A.7)

whereSyy = δHxa
δy ; Syb = δxa

δy ; Sby = δHxa
δxb

; Sbb = δxa
δxb

.Note thatSyy=Sas defined in (14).
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Generalized LS regression is different from ordinary LS because the influence matrix is not symmet-
ric anymore. For idempotence, usingA.1 it easy to show thatSzzSzz=Szz. Finally,

Sbb = B−1A = In −HTR−1HA (A.8)

hence,
tr(Sbb) = n− tr(HTR−1HA) = n− tr(Syy) (A.9)

it follows that
tr(Szz) = tr(Syy)+ tr(Sbb) = n (A.10)

The trace of the influence matrix is still equal to the parameters dimension.

B Appendix: Approximate calculation of self-sensitivity in a large variational analysis
system

In a optimal variational analysis scheme, the analysis error covariance matrixA is approximately the
inverse of the matrix of second derivatives (the Hessian) ofthe cost function J, i.e.A=(J′′)−1 (Rabier and
Courtier, 1992). Given the large dimension of the matrices involved,J and its inverse cannot be computed
explicitly. Following Fisher and Courtier (1995) we use an approximate representation of the Hessian
based on a truncated eigen-vector expansion with vectors obtained through the Lanczos algorithm. The
calculations are performed in terms of a transformed variable χ ,χ = L−1(x− xb), with L chosen such
thatB−1=LTL . The transformationL thus reduces the covariance of the prior to the identity matrix. In
variational assimilationL is referred to as the change-of-variable operator (Courtier et al. 1998).

J′′−1 = B−
M

∑
i=1

1−λi

λi
(Lvi)(Lvi)

T (B.1)

The summation inB.1 approximates the variance reductionB-A due to the use of observations in the
analysis. (λi,vi ) are the eigen-pairs ofA. The Hessian eigen-vectors are also used to precondition the
minimization (Fisher and Andersson, 2001). The computed eigen-values are not used to minimize the
cost function but only to estimate the analysis covariance matrix. It is well known, otherwise, that the
minimization algorithm is analogous to the conjugate-gradient algorithm. Because the minimum is found
within an iterative method, the operational number of iterations is sufficient to find the solution (with the
required accuracy) but does not provide a sufficient number of eigen-pairs to estimate the analysis error
variances.

The diagonal of the background error covariance matrixB in B.1 is also computed approximately, using
the randomisation method proposed by Fisher and Courtier (1995). From a sample ofN random vectors
ui (in the space of the control-vectorχ), drawn from a population with zero mean and unit Gaussian
variance, a low-rank representation ofB (in terms of the atmospheric state variables x) is obtained by

B =
1
N

N

∑
i=1

(Lui)(Lui)
T (B.2)

This approximate representation ofB has previously been used by Anderssonet al. (2000) to diagnose
background errors in terms of observable quantities, i.e.HBHT.
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InsertingB.1 andB.2 into (16) an approximate method for calculatingS is achieved, that is practical for
a large dimension variational assimilation (both 3D and 4D-Var):

S= R−1H[
1
N

N

∑
i=1

(Lui)(Lui)
T −

M

∑
i=1

1−λi

λi
(Lvi)(Lvi)

T ]HT (B.3)

Only the diagonal elements ofS are computed and stored - that is, the analysis sensitivities with respect
to the observations, or self-sensitivities Sii . The cross-sensitivity Si j for i6=j, that represents the influence
of the jth observation to the analysis at the ith location, is not computed. Note that the approximation of
the first term is unbiased, whereas the second term is truncated such that variances are underestimated.
For small M the approximate Sii will tend to be over-estimates. For the extreme case M=0 Eq.(B.3) gives
S=R−1HBHT which in particular can have diagonal elements larger than one if elements ofHBHT are
larger than the corresponding elements ofR. The effect of the approximation on the calculated Sii values
is investigated.
Approximations in both of the two terms of (B.3) contribute to the problem. For the second term, the
degree of over-estimation depends on the structure of the covariance reduction matrixB-A.

For an analysis in which observations lead to strongly localised covariance reduction (such as the surface
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Figure 11: Proportion of self-sensitivity values greater than one (%) versus the number of Hessian vectors used to
compute the variances ofB-A, using the approximate method described inB.3.

pressure analysis with its short co-variance length scales∼180 km, and large observational impacts) a
large M is required to approximateB-A accurately.

In Fig. 11, the proportion of observations for which Sii>1 is plotted versus M, the number of Hessian
vectors used. The plot shows a gradual decrease of Sii >1 as M increases, as expected. The curve seems
to approach 10,000 Sii>1 (0.7% in the plot) for M somewhere between 1,000 and 2,000. However, in-
creasing the number of Hessian vectors slightly increases the number of self-sensitivities less than zero
(by 0.5%). This problem can be understood by looking at the approximations introduced through the
first term of (B.3). The truncation N of the first term determines the randomisation sample size: larger
N leads to smaller noise. The noise is unbiased - that is, the term is neither over nor under-estimated on
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average. The randomisation noise in the diagonal elements is in the order 10% with N=50 (Anderssonet
al. 2000). With N=500, values Sii<0 have all disappeared.
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