Data Assimilation

Observation Impact on the Short
Range Forecast

C. Cardinali

Research Department

June 2013



Series: ECMWEF Lecture Notes

A full list of ECMWF Publications can be found on our web site under:
http://ww. ecmnf . i nt/publications/

Contact: library@ecmwf.int

(©Copyright 2013

European Centre for Medium-Range Weather Forecasts
Shinfield Park, Reading, RG2 9AX, England

Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication
is not to be reprinted or translated in whole or in part without the written permission of the Director-
General. Appropriate non-commercial use will normally be granted under the condition that reference
is made to ECMWF.

The information within this publication is given in good faith and considered to be true, but ECMWF
accepts no liability for error, omission and for loss or damage arising from its use.


http://www.ecmwf.int/publications/

Observation Impact on Forecast cECMWF

Abstract

The concept and the use of the forecast error sensitivitpseivations for diagnostic purposes are
illustrated in this paper. The tool computes the contrinutif all observations to the forecast error:
a positive contribution is associated with forecast ernaréase and a negative contribution with
forecast error decrease. The forecast range investigatiiour. It can be seen that globally, the
assimilated observations decrease the forecast err@ij\ldmwever also poor performance can be
found. The forecast deterioration can be related eithanagalata quality or to the data assimilation
and forecast system. The data impact on the forecast isalpatnd also temporally variable. It
depends on atmospheric regimes, which may be well or not nepliesented by the model or by
the data. An example of a routine diagnostic assessmentsefraditional impact on the short-range
forecast performance is shown. The example also illusttaeetools flexibility to represent different
degrees of detail of forecast improvement or deterioration

1 Introduction

The ECMWEF four-dimensional variational system (4D-VarpRaet al. 2000) handles a large variety
of both space and surface-based meteorological obseargdticore than 30 million a day) and combines
the observations with the prior (or background) informatim the atmospheric state. A comprehensive
linearized and non-linear forecast model is used, courttdighe order of degrees of freedom.

The assessment of the observational contribution to aisg@ardinaliet al. 2004, Chapniclet al. 2004,
Lupu et al. 2011) and forecast is among the most challenging diagsostidata assimilation and nu-
merical weather prediction. For the forecast, the assegsnhéhe forecast performance can be achieved
by adjoint-based observation sensitivity techniques ¢haracterize the forecast impact of every mea-
surement (Baker and Daley 2000, Langland and Baker 2004}ir@dirand Buizza, 2004, Morneaat

al., 2006, Xu and Langlang, 2006, Zhu and Gelaro 2008, Card2®D). The technique computes the
variation in the forecast error due to the assimilated datparticular, the forecast error is measured by
a scalar function of the model parameters, namely wind, ggatpre, humidity and surface pressure that
are more or less directly related to the observable questtiti

In general, the adjoint methodology can be used to estirhatsdnsitivity measure with respect to any
assimilation system parameter of importance. For exarb@escu (2008) derived a sensitivity equation
of an unconstrained variational data assimilation system fthe first-order necessary condition with

respect to the main input parameters: observation, bagkdrcand observation and background error
covariance matrices.

The forecast sensitivity to observation technique (FS@pmplementary to the Observing System Ex-
periments (OSEs) that have been the traditional tool famesing data impact in a forecasting system
(Bouttier and Kelly, 2001; Engliskt al,, 2004; Lord et al., 2004; Kelly 2007 and Radnetial.,, 2010
and 2012). Very important is the use of OSEs in complemen&to  highlight the contribution e.g. of
a particular data set and to address the causes of degradaiimprovement which FSO measures.

The main differences between adjoint-based and OSE tastwiare:

e The adjoint-based observation sensitivity measures tpadtof observations when the entire ob-
servational dataset is present in the assimilation systdmife the observing system is modified in
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the OSE. In fact, each OSE experiment differs from the ofimetierms of assimilated observations.

e The adjoint-based technique measures the impact of oltisgry@eparately at every analysis cycle
versus the background, while the OSE measures the totaktngpaemoving data information
from both background and analysis.

e The adjoint-based technique measures the response ofla firgcast metric to all perturbations
of the observing system, while the OSE measures the effecsioigle perturbation on all forecast
metrics.

e The adjoint-based technique is restricted by the tangeealiassumption and therefore it is valid
for forecasts up to 2-days, while the OSE can measure theidatect on longer range forecast
and in non linear regimes.

The aim of this paper is to introduce the mathematical canaeg the application of the forecast sensi-
tivity to the observation tool. The general ECMWF systentfgrenance in the 24 hour range forecast is
shown as derived by the diagnostic tool.

In 2, the theoretical background of the FSO and the calculatidheoforecast error contribution (FEC)
from observations are shown. The ECMWF forecast perform@nilustrated i3 and conclusions are
drawn in4.

2 Observational Impact on the Forecast

() Linear analysis equation

Data assimilation systems for numerical weather predigfid/VVP) provide estimates of the atmospheric
statex by combining meteorological observatiopsvith prior (or background) informatiory. A simple
Bayesian normal model provides the solution as the postexpectation forx, giveny andx,. The
same solution can be achieved from a clasdregjuentistapproach, based on a statistical linear analysis
scheme providing the Best Linear Unbiased Estimate (Tafabt997) ok, giveny andxy. The optimal
general least square solution to the analysis problem (sent 1986) can be written as:

Xa=Ky+ (I —=KH)xp 1)

The vectolx, is called the ‘analysis’. The gain matti (of dimensiomn x p with n being the state vector
andp the observation vector dimensions) takes into accountesigective accuracies of the background
vectorx, and the observation vectgras defined by then(x n)-dimensioned covariance matikand
the (p x p)-dimensioned covariance matiik with:

K=B1+HRH)HTR? 2)
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andl is the g x n) identity matrix. HereH is a (p x n)-dimensioned matrix interpolating the background
fields to the observation locations, and transforming theleh@ariables to observed quantities (e.qg.
radiative transfer calculations transforming the modelsgerature, humidity, ozone etc. to brightness
temperatures as observed by satellite instruments). MDRear context introduced abovk, is defined

to also include the propagation of the atmospheric statrey the forecast model to the time at which

the observations were recorded.

From (1) the sensitivity of the analysis system with respect to theeovations can be derived from:

OXa

e KT 3)

(3) provides the observational influence in the analysis ({Bafidet al. 2004).

(b) Sensitivity equation

Baker and Daley (2000) derived the forecast sensitivityagiqn with respect to the observations in the
context of variational data assimilation. Let us considecalar J-function of the forecast error. The
sensitivity of J with respect to the observations can beioéthusing a simple derivative chain as:

0J  &J OXa

3y~ oxa by “

wheredJ/dx, is the sensitivity of the forecast error to the initial cdratis (Rabieet al. 1996, Gelareet
al., 1998). The forecast error is mapped onto the initial comakt by the adjoint of the model providing,
for example, regions that are particularly sensitive t@daist error growth (se#c)). By using ) and
(3) the forecast sensitivity to the observations becomes:

51 _ 783

& L8
oy  OXa

=R MHBI+HRH
(B + ) e

()

where(B~1 +HTR~!H)1is the analysis error covariance matéix

In practice, a second-order sensitivity gradient is ne€dadgland and Baker, 2004; Errico 2007) to ob-
tain the information related to the forecast error becalgditst-order sensitivity gradient only contains
information on the sub-optimality of the assimilation gyat(see2(c) and Cardinali 2009).

The forecast error is defined By= 1/2 ( ,Cea) where t stands for thieuth. e denotes the forecast error
with respect to temperature, vorticity and divergence dbagesurface pressure. In practice, the forecast
error is computed as the difference between the 24-houcdsteand the analysis valid at the same time.
This implies that the verifying analysis is considered taHmtruth:

e The verifying analysis is only a proxy of the truth and thusoes in the analysis can obscure the
observation impact in the short-range forecast.
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C is a matrix of weighting coefficients that integrate the edais of the forecast error to a dry energy
norm that is a scalar:

e Energy norm is a suitable choice because it directly dependbe most relevant model param-
eters also contained in the control veckofthe vectors used in the minimization process in e.g
4D-Var). Nevertheless, alternative functions of modebpagters can be used.

Equation §) can be solved (Krylov-method, Van der Vorst 2003) and tliedast error sensitivity to all
assimilated observations is then derived. The numerictiodeused is shown &d) (see also Cardinali
2009)

(c) Sensitivity gradient

Lets consider two forecasts of lengttstarting fromx, and lengthg starting fromxy,, beingx, the
background field used in the analysis. Both forecasts verify at tinheFollowing Langland and Baker
(2004) and Errico (2007) the second-order sensitivity igratds defined as:

5o o
OXa OXa OXp

(6)

Where J =( ( Xs - %), C(Xt - %) ) /2 and § =( ( Xg - %), C(Xg - %) ) /2 are a quadratic measure of the
two forecast errorsx( the verifying analysis), an@ is the matrix of dry energy weighting coefficients.
It is clear that from 4) the adjoint model maps the sensitivity (with respect toftivecast) of d into
J¢/ O x5 along the trajectory and the sensitivity ofglinto 8 Jy/d X, along the trajectorg (see Rabieet

al. 1996, Gelaret al., 1998 for the first-order sensitivity gradient definitiamdecomputation). Equation
(6) is schematically represented

observations
assimilated

g

t—12h ¢t+0 t+ 24h

Figure 1: Geometrical representation of the sensitivitadjent calculation expressed i6)(

Lets now compare the first-order sensitivity gradient wite second-order one. Lets definde) =
lleCell , X (e), express the variation of the forecast error due to theralsgion of observations, that
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is JEa) - J(&) where thee, ande, are the analysis and the background error. Following Lambnd
Baker, the second-order Taylor series decomposition (sed=arico 2007) is used to map such variation:

J(e) —J(ea) = (@ — €)' I + %(90 —e)" I (& —€) (7)

Because the error cost function is quadrafig,réduces to

J(en) —J(ea) = 2(er — €a) " €a+ (& — €2) T (& — €0) (8)
which at the first order is
J(ep) —J(ea) = 2d'K e, ©)

In an optimal assimilation system, the right hand side ofdbfeation is on average zero (Talagrand,
2002) since statistically, the innovation vectdsy-Hxp,, and the analysis error are orthogonal. There-
fore, it is clear that the results obtained by using the firsier sensitivity gradient, only provides the
measure of the sub-optimality of the analysis system. Thergkorder term appears necessary to be
included in the FSO calculation.

(d) Numerical solution

In an optimal variational analysis scheme, the analysisr@wovariance matriA is approximately the
inverse of the matrix of second derivatives (the Hessiarthefanalysis cost functiody, (Rabieret al.
2000), i.e.A=(J3")~* (Rabier and Courtier 1992). Given the large dimension oftiagrices involved,
J2” and its inverse cannot be computed explicitly. The minitindrais performed in terms of a trans-
formed variabley, x=L ~(x-xp), with L chosen such th@=LLT . The transformatior. thus reduces
the covariance of the prior to the identity matrix. In vanatl data assimilatior, is referred to as the
change-of-variable operator (Courtigtral. 1998). Lets apply the change-of-variable in the analysst ¢
function and write:

Ja(x) = %(x —Xp) "B (x—xp) + %(Hx —y)"R Y(Hx—y)

1

= EXTXJr%(HLX—y)TR_l)(HLX—y) =Ja(X) (10)

The Hessian becomes:
JJ"(X) =1+ LTHTRHL (11)

By applying the change-of-variable i)(and by using &), the forecast sensitivity to the observations is
expressed as:

3 1 TTe-1pqy \-1 T 9J
5 R HL(+LTHTR THL) LT o (12)

Using the conjugate gradient algorithm, first the followiguation fordJ/dy = R-tHz is solved:

(I+L"™HTRHL)z=Lz,
5J

Zy = 5—Xa (13)
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The solutiore lies in the Krylov-subspace generated by the vectar, and the matrixi(+LTHTRIHL).
The Krylov-subspace dimension is the degree of the miniralginomial of ( +LTHTRtHL). There-
fore if the degree is low, the Krylov-method searches thatswi on a small dimensioned space. The
method is very efficient in an iterative solution of a linegstem with large and sparse matrices (Van
der Vorst 2003). The forecast sensitivity to observatienthén given by interpolating (using theH
operator) in the observation space and by normalizing vegipect to the observation error covariance
matrix R.

(e) Observation impact measure
Once the forecast sensitivity is computed, the variaddrof the forecast error expressed bgan be
found by rearrangingl) and by using the adjoint property for the linear operator:

0J 0J

5—)(6175)(a> = <—7K(y_ be)>

0J = oxa

oJ
= <KTa>y— HXb>
a

(73 g 8

where dx; = X5 — Xp are the analysis increments adgl = y — Hxy, is the innovation vector.0J is
computed across the 12 hour window; the sensitivity grasiéd/ dx, , valid at the starting time of the
4D-Var window (09 and 21 UTC in the ECMWF system), are disitiélol byK T, which incorporates the
temporal dimension, over the 12-hour window. From Elgl) (few considerations should be taken into
account:

e The forecast impacdJ (hereafter called Forecast Error Contribution, FEC) ofadiservations
assimilated depends on the forecast erdoe)— 8J/x,), the assimilation systenK(") and the
difference between the observations and the modelHxy).

e Positive forecast error variatiahl > 0 is synonymous of forecast degradation. Negative forecast
error variationdJ < 0 is synonymous of forecast improvement.

e The verifying analysis is only a proxy of the truth. Therefoerrors in the analysis can mask the
observation impact in the forecast.

e Biases in the model can result on forecast degradation trateously is interpreted as an obser-
vation related degradation.

e Since the computation is performed with the linearized rhodely errors in the short-range
forecast can be diagnosed.

e The forecast error is measured using a dry energy norm tiggindis on wind, temperature and
surface pressure. Therefore, observables depending sa plagameters are rather well assessed.
Moreover, the dependency of the forecast error on humiditgpresented by the linearized moist
process so that also forecast impact of humidity obsemstare fully assessed (Janiskova and
Cardinali 2012 in preparation).

e The variation of the forecast error due to a specific measemémwan be summed up over time
and space in different subsets to compute the average lmatidn of different components of the
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observing system to the forecast error. For example, thiibation of all AMSU-A satellitess,
and channeld, over time T will be;

0JamMsU-A = Zs Z Zr =0
sCSicchanneltC

This is one of the most important characteristics of the beaause it allows any necessary level
of granularity in analysis for a comprehensive investimati

Given all the points above it is clear that a full diagnosssessment is necessary to establish the causes

for a forecast error increase.

3 Reaults

The routinely computed observational impact from the aj@ral ECMWF 4D-Var system (Rabiet
al 2000; Janiskovet al. 2002; Lopez and Moreau, 2005) is shown in R2dor September and October
2011. At ECMWEF, the ‘observation impact’-suite runs one dakiind the model-suite, in time to recover
the actual verifying analysis for the forecast error corapah. The 24-hour forecast error contribution
(FEC) of all the observing system components is computedsaodn in the top panel of Fig2 for

different observation types as defined in Tahldue to technical reasons, microwave imagers (SSMIS

and TMI) have not been considered in this study. The largagribution to decreasing the forecast error
is provided by AMSU-A (& 25 %), IASI, AIRS, AIREP (aircraft data and GPS-RO obsepratiaccount

for 10% of the total impact, respectively. TEMP and SYNOHae pressure observations contribute
by 5% followed by AMVs and HIRS~4%), then by ASCAT and DRIBU (3%). All other observations

contribute to less than 3%.
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Figure 2: Observation contribution to the global forecaste reduction grouped by observation type as defined in
1. The measure is given in percent and for the months of Septeanid October. Left panel is total forecast error
contribution and the error bars are computed using the staddrror measure. In the right panel the average

forecast error contribution (normalized by the number oetvations used) is shown.

The error of the observation impact measure is also disglay€ig. 2 (top panel) which depend on the
standard error and on the number of observation assimilatétht period. If the FEC measures vari-
ability is within the error range, the variation is not catesied to be significant. In the bottom panel of
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re,

re,

Data Data kind Information
name
OZONE | Backscattered solar UV radiation, re-Ozone, stratosphere
(03) trievals
GOES- US geostationary satellite infrargdMoisture, mid/upper troposphere
Radiance| sounder radiances
MTSAT- | Japanese geostationary satellite [ifvioisture, mid/upper troposphere
Rad frared sounder radiances
MET-rad | EUMETSAT geostationary satellite in-Moisture, mid/upper troposphere
frared sounder radiances
AMSU-B | Microwave sounder radiances Moisture, troposphere
MHS Microwave sounder radiances Moisture, troposphere
MERIS Differential reflected solar radiation, Total column water vapour
retrievals
GPS-RO | GPS radio occultation bending angles Temperature, surface pressure
IASI Infrared sounder radiances Temperature, moisture, ozone
AIRS Infrared sounder radiances Temperature, moisture, ozone
AMSU- Microwave sounder radiances Temperature
A
HIRS Infrared sounder radiances Temperature, moisture, ozone
ASCAT | Microwave scatterometer backscatteBurface wind
coefficients
MODIS- | US polar Atmospheric Motion Vectors, Wind, troposphere
AMV retrievals
Meteosat-| EUMETSAT geostationary Atmot Wind, troposphere
AMV spheric Motion Vectors, retrievals
MTSAT- | Japanese geostationary Atmospherl/ind, troposphere
AMV Motion Vectors, retrievals
GOES- US geostationary Atmospheric MotignWind, troposphere
AMV Vectors, retrievals
PROFILERAmerican, European and Japanesé/ind, troposphere
Wind profiles
PILOT Radiosondes at significant level fromwind, troposphere
land stations
DROP Dropsondes from aircrafts Wind, temperature, moisture, pressu
troposphere
TEMP Radiosondes from land and ships Wind, temperature, moisture, pressu
troposphere
AIREP Aircraft measurements Wind, temperature, troposphere
DRIBU Drifting buoys Surface pressure, temperature, mg
ture, wind
SYNOP | Surface Observations at land statignSurface pressure, temperature, md
and on ships ture, wind

Table 1: Observation type assimilated in September andligct®011. Number of observations per assimilation

cycle is~5 1(F.
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Fig. 2, the mean impact per individual observation is shown. Is thise, the impact is independent from
the observation number. The largest mean contributionagigeed by DROP and DRIBU (surface pres-
sure) observations, followed by the contribution of a selcgroup of observations comprising MERIS,
AMVs, ASCAT, GPS-RO, SYNOP, TEMP, AMSU-B and AIREP. Conjrao the total forecast impact
that is largely provided by satellite observations, thgdat per-observation impact is obtained from con-
ventional observations. The difference between the twathmeasures is mainly due to difference in
observation accuracy through which a single conventiobagoration is on average more influential in
the analysis than a single satellite measurement.
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Figure 3: Variation of total Forecast Error Contribution idune, July, August, September and October 2011 for
the different observation types.

The monthly variation of forecast impact is shown in Figer observation type and for June -October
2011. The only significant temporal variation is observedA®MSU-A with the largest forecast impact
in August and September, and for GPS-RO and IASI in July argL&t) respectively.

The AMSU-A forecast impact has been analyzed in more delai¥ the contribution of all channels
to the forecast error decrease is shown. Channel 8 has tiestasverall impact and the stratospheric
channels (11-14) the smallest. There is no significantrdiffee in performance between September and
October. The geographical distribution of mean forecagrowement or deterioration from channel 8
is shown in Fig.5 for September-October 2011. The METOP-A AMSU-A perfornaaig compared
with that of NOAA-15 since they have a similar satellite drievertheless, there is a difference in the
measurement time since METOP-A crosses the equator atcg@B@0 and NOAA-15 at 16:30. The
overall impact of the instrument on the two satellites is pamble. The geographical location of the
improvement instead differs quite substantially with tixeeption of the polar and central Southern
Hemisphere regions where both are performing similarlyl.wéh the western part of the Southern
Hemisphere, METOP-A reduces the forecast error whilst NG&Ancreases it; on the contrary, in the
eastern part, NOAA-15 shows a large and consistent imprexdemhereas METOP-A shows small areas
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Figure 4: Total Forecast Error Contribution for all AMSU-Astruments in percent. The impact is shown for all
assimilated channels and for September and October 2011.

of degradation. A similar impact pattern is observed forTrmpics and Northern Hemisphere.
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Figure 5: Mean Forecast Error Contribution for AMSU-A chali8 onboard METOP-A (left panel) and NOAA-15
(right) for the whole globe. Unit is Joule.

Once the area of degradation or improvement and the periddtecest are determined, the addition of
OSEs can help to determine the possible causes. For exarapl®e necessary to identify the explicit
contribution of AMSU-A channel 8 to the degradation over &tantic (METOP-A) or central Africa
(NOAA-15). The comparison between the experiment wheraméle8 is not assimilated and the control
experiment (in which it s assimilated) will add informatitor the specific case and will help in evaluat-
ing suitability of the assimilation procedure for this data

The variation of forecast impact with time for AMSU-A chahi®eis shown for the North Atlantic re-
gion in Fig. 6 (top panel). Again METOP-A (left panel) and NOAA-15 (righamel) are compared.
METOP-A shows much larger temporal variability than NOAB-and displays more events of detri-
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Figure 6: Daily variation of mean FEC (top panel), backgral¢black line) and analysis (grey line) departure
(middle panel) and observation number (bottom panel) dverAtlantic region from September to mid November
2011 for METOP-A (left panel) and NOAA-15 (right panel) AM&ldhannel 8.
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Figure 7: Data coverage for METOP-A (top panel) and NOAA-fi&t(om panel) AMSU-A. The swath colour is
related to the measurement time from 21 UTC to 9 UTC.
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mental impact (positive values) than NOAA-15 that, exceptd few occasions, performs rather well
over the entire period. The observation departures aredéffepent: the departures with respect to the
background (black line middle panel) is smaller for METOReA average 0.05 K) until the beginning
of October when the assimilation of METOP-A restarted adtbreak of three days due to routine satel-
lite maintenance. After the" of October, METOP-A background departures become smaliethie
largest absolute decrease (0.025 K) is observed insteadd&A-15. And, from October onwards, the
observation departure from the analysis (grey line middieg) becomes very similar (close to zero on
average) while before that day, NOAA-15 shows a small pashias. Interestingly, the forecast reduc-
tion also changes: METOP-A shows larger variability thafol®and to a less extent also NOAA-15.
However, on average, as shown in Figthe impact of the two satellites is quantitatively similaough
different in terms of location. Over the Pacific, for examp#ETOP-A and NOAA-15 time series of
the forecast performance are more similar, with METOP-Anghg also few large improvements (not
shown). The number of measurements provided by the twditede$ very similar (bottom panel). The
larger forecast error reduction of NOAA-15 with respect t&E MDP-A over the North Atlantic is due
to the measurement time ( Fi@). In fact, NOAA-15 satellite cross the Atlantic close to 9 OWhich
corresponds to the end of the 12 hour assimilation windoweémD-Var system used (Fid.light grey)
whilst the METOP-A platform is observing the Atlantic at theginning of the assimilation window
(Fig. 7 dark grey). Due to the evolution of the model error covarantatrixB across the assimilation
window, observations assimilated towards the end of thelavinare more influential than observations
assimilated at the beginning of the window.

4 Conclusion

Over the last few years, the potential of using derived atlbased diagnostic tools has been largely
exploited. Recently, a compact derivation of the 4D-Vars#tesity equations by using the theoretical
framework of the implicit function has been derived (Dae2608). The analytical formulation of the
sensitivity equations with respect to an extended set aftipprameters has been shown and numerical
applications will soon follow. This paper illustrates thgeuof the forecast sensitivity with respect to
time-distributed observational data, first time in a 12+héD-Var assimilation system, as a diagnostic
tool to monitor the observation performance in the shanggeaforecast. The fundamental principles, on
which the forecast sensitivity diagnostic tool is based,ibustrated and an example of a routine diag-
nostic is provided.

The forecast sensitivity to observations can only be useligignose the impact on the short-range fore-
cast, namely for periods of 24 to 48 hours, given the use oattj@int model and the implied linearity
assumption. The tool allows the computation and visuatimabf the impact for each assimilated mea-
surement and therefore the diagnostic can be performedlércahto global scales and for any period of
interest. The use the second-order sensitivity gradiemtéigssary to identify the forecast impact of the
observations; in fact, the projected first-order sensjtigradient only contains information on the sub-
optimality of the assimilation system. The tools charasties have been explained: in particular, the
dependency of the tool on the verifying analysis used to egenthe forecast error and the dependency
of the sensitivity tool on the scalar function representing global forecast error (energy norm). The
function of the global forecast error is first mapped ontaitiitéal conditions (using the adjoint operator
of the model forecast) and then into the observation spagedthe adjoint operator of the analysis sys-
tem). The forecast error sensitivity of a specific measurgrnsstransformed on forecast error variation
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via a scalar product with the innovation vector.

The global impact of observations is found to be positive thedforecast errors decrease for all data
type when monthly averaged. In fact, due to statistical neadfithe assimilation procedure, the observa-
tion impact must be averaged over a long enough period tagpéisant.

An example of observation impact monitoring has been shawehfeom the global performance as-
sessment the specific performance of one AMSU-A channel éas ttlustrated for two polar orbiting
satellites, namely METOP-A and NOAA-15 covering a simildbib The causes of degradation or im-
provement can be further investigated using ObservingeBy&ixperiments.

Given the dependency of some observation types on the ro&igimal situation, it is suggested to run
the forecast sensitivity to the observation diagnostid tmoan operational basis and in relation to the
operational suite error. A constant monitoring of the perfance of the model forecast would allow
the use of the observation network in an adaptive way wheserehtions with negative impact can be
investigated and potentially denied in real time.
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