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Observation Impact on Forecast

Abstract

The concept and the use of the forecast error sensitivity to observations for diagnostic purposes are
illustrated in this paper. The tool computes the contribution of all observations to the forecast error:
a positive contribution is associated with forecast error increase and a negative contribution with
forecast error decrease. The forecast range investigated is 24 hour. It can be seen that globally, the
assimilated observations decrease the forecast error; locally however also poor performance can be
found. The forecast deterioration can be related either to the data quality or to the data assimilation
and forecast system. The data impact on the forecast is spatially and also temporally variable. It
depends on atmospheric regimes, which may be well or not wellrepresented by the model or by
the data. An example of a routine diagnostic assessment of observational impact on the short-range
forecast performance is shown. The example also illustrates the tools flexibility to represent different
degrees of detail of forecast improvement or deterioration.

1 Introduction

The ECMWF four-dimensional variational system (4D-Var, Rabier et al. 2000) handles a large variety
of both space and surface-based meteorological observations (more than 30 million a day) and combines
the observations with the prior (or background) information on the atmospheric state. A comprehensive
linearized and non-linear forecast model is used, counting108 the order of degrees of freedom.

The assessment of the observational contribution to analysis (Cardinaliet al. 2004, Chapnicket al. 2004,
Lupu et al. 2011) and forecast is among the most challenging diagnostics in data assimilation and nu-
merical weather prediction. For the forecast, the assessment of the forecast performance can be achieved
by adjoint-based observation sensitivity techniques thatcharacterize the forecast impact of every mea-
surement (Baker and Daley 2000, Langland and Baker 2004, Cardinali and Buizza, 2004, Morneauet
al., 2006, Xu and Langlang, 2006, Zhu and Gelaro 2008, Cardinali2009). The technique computes the
variation in the forecast error due to the assimilated data.In particular, the forecast error is measured by
a scalar function of the model parameters, namely wind, temperature, humidity and surface pressure that
are more or less directly related to the observable quantities.

In general, the adjoint methodology can be used to estimate the sensitivity measure with respect to any
assimilation system parameter of importance. For example,Daescu (2008) derived a sensitivity equation
of an unconstrained variational data assimilation system from the first-order necessary condition with
respect to the main input parameters: observation, background, and observation and background error
covariance matrices.

The forecast sensitivity to observation technique (FSO) iscomplementary to the Observing System Ex-
periments (OSEs) that have been the traditional tool for estimating data impact in a forecasting system
(Bouttier and Kelly, 2001; Englishet al., 2004; Lord et al., 2004; Kelly 2007 and Radnotiet al., 2010
and 2012). Very important is the use of OSEs in complement to FSO to highlight the contribution e.g. of
a particular data set and to address the causes of degradation or improvement which FSO measures.

The main differences between adjoint-based and OSE techniques are:

• The adjoint-based observation sensitivity measures the impact of observations when the entire ob-
servational dataset is present in the assimilation system,while the observing system is modified in
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the OSE. In fact, each OSE experiment differs from the othersin terms of assimilated observations.

• The adjoint-based technique measures the impact of observations separately at every analysis cycle
versus the background, while the OSE measures the total impact of removing data information
from both background and analysis.

• The adjoint-based technique measures the response of a single forecast metric to all perturbations
of the observing system, while the OSE measures the effect ofa single perturbation on all forecast
metrics.

• The adjoint-based technique is restricted by the tangent linear assumption and therefore it is valid
for forecasts up to 2-days, while the OSE can measure the dataimpact on longer range forecast
and in non linear regimes.

The aim of this paper is to introduce the mathematical concept and the application of the forecast sensi-
tivity to the observation tool. The general ECMWF system performance in the 24 hour range forecast is
shown as derived by the diagnostic tool.

In 2, the theoretical background of the FSO and the calculation of the forecast error contribution (FEC)
from observations are shown. The ECMWF forecast performance is illustrated in3 and conclusions are
drawn in4.

2 Observational Impact on the Forecast

(a) Linear analysis equation

Data assimilation systems for numerical weather prediction (NWP) provide estimates of the atmospheric
statex by combining meteorological observationsy with prior (or background) informationxb. A simple
Bayesian normal model provides the solution as the posterior expectation forx, given y andxb. The
same solution can be achieved from a classicalfrequentistapproach, based on a statistical linear analysis
scheme providing the Best Linear Unbiased Estimate (Talagrand 1997) ofx, giveny andxb. The optimal
general least square solution to the analysis problem (see Lorenc 1986) can be written as:

xa = Ky+(I−KH)xb (1)

The vectorxa is called the ‘analysis’. The gain matrixK (of dimensionn× p with n being the state vector
andp the observation vector dimensions) takes into account the respective accuracies of the background
vectorxb and the observation vectory as defined by the (n× n)-dimensioned covariance matrixB and
the (p× p)-dimensioned covariance matrixR, with:

K = (B−1 + HTR−1H)−1HTR−1 (2)
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andI is the (n× n) identity matrix. Here,H is a (p× n)-dimensioned matrix interpolating the background
fields to the observation locations, and transforming the model variables to observed quantities (e.g.
radiative transfer calculations transforming the models temperature, humidity, ozone etc. to brightness
temperatures as observed by satellite instruments). In the4D-Var context introduced above,H is defined
to also include the propagation of the atmospheric state vector by the forecast model to the time at which
the observations were recorded.
From (1) the sensitivity of the analysis system with respect to the observations can be derived from:

δxa

δy
= KT (3)

(3) provides the observational influence in the analysis (Cardinali et al. 2004).

(b) Sensitivity equation

Baker and Daley (2000) derived the forecast sensitivity equation with respect to the observations in the
context of variational data assimilation. Let us consider ascalar J-function of the forecast error. The
sensitivity of J with respect to the observations can be obtained using a simple derivative chain as:

δJ
δy

=
δJ
δxa

δxa

δy
(4)

whereδJ/δxa is the sensitivity of the forecast error to the initial conditions (Rabieret al. 1996, Gelaroet
al., 1998). The forecast error is mapped onto the initial conditions by the adjoint of the model providing,
for example, regions that are particularly sensitive to forecast error growth (see2(c)). By using (2) and
(3) the forecast sensitivity to the observations becomes:

δJ
δy

= KT δJ
δxa

= R−1H(B−1 + HTR−1H)−1 δJ
δxa

(5)

where(B−1 + HTR−1H)−1 is the analysis error covariance matrixA.
In practice, a second-order sensitivity gradient is needed(Langland and Baker, 2004; Errico 2007) to ob-
tain the information related to the forecast error because the first-order sensitivity gradient only contains
information on the sub-optimality of the assimilation system (see2(c) and Cardinali 2009).
The forecast error is defined byJ = 1/2 〈 et ,Cet〉 where t stands for thetruth. e denotes the forecast error
with respect to temperature, vorticity and divergence as well as surface pressure. In practice, the forecast
error is computed as the difference between the 24-hour forecast and the analysis valid at the same time.
This implies that the verifying analysis is considered to bethe truth:

• The verifying analysis is only a proxy of the truth and thus errors in the analysis can obscure the
observation impact in the short-range forecast.
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C is a matrix of weighting coefficients that integrate the elements of the forecast error to a dry energy
norm that is a scalar:

• Energy norm is a suitable choice because it directly dependson the most relevant model param-
eters also contained in the control vectorx (the vectors used in the minimization process in e.g
4D-Var). Nevertheless, alternative functions of model parameters can be used.

Equation (5) can be solved (Krylov-method, Van der Vorst 2003) and the forecast error sensitivity to all
assimilated observations is then derived. The numerical method used is shown is2(d) (see also Cardinali
2009)

(c) Sensitivity gradient

Lets consider two forecasts of lengthf starting fromxa and lengthg starting fromxb, being xb the
background field used in thexa analysis. Both forecasts verify at timet. Following Langland and Baker
(2004) and Errico (2007) the second-order sensitivity gradient is defined as:

δJ
δxa

=
δJf

δxa
+

δJg

δxb
(6)

Where Jf =〈 ( x f - xt ), C(x f - xt ) 〉 /2 and Jg =〈 ( xg - xt ), C(xg - xt ) 〉 /2 are a quadratic measure of the
two forecast errors (xt the verifying analysis), andC is the matrix of dry energy weighting coefficients.
It is clear that from (4) the adjoint model maps the sensitivity (with respect to theforecast) of Jf into δ
Jf / δ xa along the trajectoryf and the sensitivity of Jg into δ Jg/δ xa along the trajectoryg (see Rabieret
al. 1996, Gelaroet al., 1998 for the first-order sensitivity gradient definition and computation). Equation
(6) is schematically represented

observations

assimilated

t + 24ht – 12h t + 0

xt

Jf

Jg

x
b

x
a

g

J

f

Figure 1: Geometrical representation of the sensitivity gradient calculation expressed in (6).

Lets now compare the first-order sensitivity gradient with the second-order one. Lets define J1(e) =
‖e,Ce‖ , J1 (e), express the variation of the forecast error due to the assimilation of observations, that
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is J(ea) - J(eb) where theea andeb are the analysis and the background error. Following Langland and
Baker, the second-order Taylor series decomposition (see also Errico 2007) is used to map such variation:

J(eb)−J(ea) = (eb − ea)
TJ′ea

+
1
2
(eb − ea)

TJ′′ea
(eb − ea) (7)

Because the error cost function is quadratic, (7) reduces to

J(eb)−J(ea) = 2(eb − ea)
Tea +(eb − ea)

T(eb − ea) (8)

which at the first order is
J(eb)−J(ea) = 2dTKTea (9)

In an optimal assimilation system, the right hand side of theequation is on average zero (Talagrand,
2002) since statistically, the innovation vector,d=y-Hxb, and the analysis error are orthogonal. There-
fore, it is clear that the results obtained by using the first-order sensitivity gradient, only provides the
measure of the sub-optimality of the analysis system. The second-order term appears necessary to be
included in the FSO calculation.

(d) Numerical solution

In an optimal variational analysis scheme, the analysis error covariance matrixA is approximately the
inverse of the matrix of second derivatives (the Hessian) ofthe analysis cost functionJa (Rabieret al.
2000), i.e.A=(Ja

′′)−1 (Rabier and Courtier 1992). Given the large dimension of thematrices involved,
Ja

′′ and its inverse cannot be computed explicitly. The minimization is performed in terms of a trans-
formed variableχ , χ=L−1(x-xb), with L chosen such thatB=LLT . The transformationL thus reduces
the covariance of the prior to the identity matrix. In variational data assimilation,L is referred to as the
change-of-variable operator (Courtieret al. 1998). Lets apply the change-of-variable in the analysis cost
function and write:

Ja(x) =
1
2
(x−xb)

TB−1(x−xb)+
1
2
(Hx−y)TR−1(Hx−y)

=
1
2

χTχ+
1
2
(HLχ −y)TR−1)(HLχ −y) = Ja(χ) (10)

The Hessian becomes:
Ja

′′(χ) = I+ LTHTR−1HL (11)

By applying the change-of-variable in (7) and by using (8), the forecast sensitivity to the observations is
expressed as:

δJ
δy

= R−1HL(I+ LTHTR−1HL)−1LT δJ
δxa

(12)

Using the conjugate gradient algorithm, first the followingequation forδJ/δy = R−1Hz is solved:

(I+ LTHTR−1HL)z = Lza

za =
δJ
δxa

(13)
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The solutionz lies in the Krylov-subspace generated by the vectorLTza and the matrix (I+LTHTR−1HL).
The Krylov-subspace dimension is the degree of the minimal polynomial of (I+ LTHTR−1HL). There-
fore if the degree is low, the Krylov-method searches the solution on a small dimensioned space. The
method is very efficient in an iterative solution of a linear system with large and sparse matrices (Van
der Vorst 2003). The forecast sensitivity to observations is then given by interpolatingz (using theH
operator) in the observation space and by normalizing with respect to the observation error covariance
matrix R.

(e) Observation impact measure
Once the forecast sensitivity is computed, the variationδJ of the forecast error expressed byJ can be
found by rearranging (1) and by using the adjoint property for the linear operator:

δJ = 〈
δJ
δxa

,δxa〉 = 〈
δJ
δxa

,K(y−Hxb)〉

= 〈KT δJ
δxa

,y−Hxb〉

= 〈KT δJ
δxa

,δy〉 = 〈
δJ
δy

,δy〉 (14)

whereδxa = xa − xb are the analysis increments andδy = y− Hxb is the innovation vector.δJ is
computed across the 12 hour window; the sensitivity gradients δJ/δxa , valid at the starting time of the
4D-Var window (09 and 21 UTC in the ECMWF system), are distributed byKT , which incorporates the
temporal dimension, over the 12-hour window. From Eq. (14), few considerations should be taken into
account:

• The forecast impactδJ (hereafter called Forecast Error Contribution, FEC) of allobservations
assimilated depends on the forecast error (J(e) → δJ/δxa), the assimilation system (KT ) and the
difference between the observations and the model (y−Hxb).

• Positive forecast error variationδJ > 0 is synonymous of forecast degradation. Negative forecast
error variationδJ < 0 is synonymous of forecast improvement.

• The verifying analysis is only a proxy of the truth. Therefore, errors in the analysis can mask the
observation impact in the forecast.

• Biases in the model can result on forecast degradation that erroneously is interpreted as an obser-
vation related degradation.

• Since the computation is performed with the linearized model, only errors in the short-range
forecast can be diagnosed.

• The forecast error is measured using a dry energy norm that depends on wind, temperature and
surface pressure. Therefore, observables depending on these parameters are rather well assessed.
Moreover, the dependency of the forecast error on humidity is represented by the linearized moist
process so that also forecast impact of humidity observations are fully assessed (Janiskova and
Cardinali 2012 in preparation).

• The variation of the forecast error due to a specific measurement can be summed up over time
and space in different subsets to compute the average contribution of different components of the
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observing system to the forecast error. For example, the contribution of all AMSU-A satellites,s,
and channels,i, over time T will be:

δJAMSU−A = ∑
s⊂S

∑
i⊂channel

∑
t⊂T

= δJs
it

This is one of the most important characteristics of the toolbecause it allows any necessary level
of granularity in analysis for a comprehensive investigation.

Given all the points above it is clear that a full diagnostic assessment is necessary to establish the causes
for a forecast error increase.

3 Results

The routinely computed observational impact from the operational ECMWF 4D-Var system (Rabieret
al 2000; Janiskovaet al. 2002; Lopez and Moreau, 2005) is shown in Fig.2 for September and October
2011. At ECMWF, the ‘observation impact’-suite runs one daybehind the model-suite, in time to recover
the actual verifying analysis for the forecast error computation. The 24-hour forecast error contribution
(FEC) of all the observing system components is computed andshown in the top panel of Fig.2 for
different observation types as defined in Table1. Due to technical reasons, microwave imagers (SSMIS
and TMI) have not been considered in this study. The largest contribution to decreasing the forecast error
is provided by AMSU-A (∼ 25 %), IASI, AIRS, AIREP (aircraft data and GPS-RO observations account
for 10% of the total impact, respectively. TEMP and SYNOP surface pressure observations contribute
by 5% followed by AMVs and HIRS (∼4%), then by ASCAT and DRIBU (3%). All other observations
contribute to less than 3%.

0 5 10 15 20 25

SYNOP
Aircraft
DRIBU
TEMP
DROP
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PROFILER

GOES-AMV
Meteosat-AMV

MTSAT-AMV
MODIS-AMV
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Mean FEC (J)

October September

Figure 2: Observation contribution to the global forecast error reduction grouped by observation type as defined in
1. The measure is given in percent and for the months of September and October. Left panel is total forecast error
contribution and the error bars are computed using the standard error measure. In the right panel the average
forecast error contribution (normalized by the number of observations used) is shown.

The error of the observation impact measure is also displayed in Fig. 2 (top panel) which depend on the
standard error and on the number of observation assimilatedin that period. If the FEC measures vari-
ability is within the error range, the variation is not considered to be significant. In the bottom panel of
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Data
name

Data kind Information

OZONE
(O3)

Backscattered solar UV radiation, re-
trievals

Ozone, stratosphere

GOES-
Radiance

US geostationary satellite infrared
sounder radiances

Moisture, mid/upper troposphere

MTSAT-
Rad

Japanese geostationary satellite in-
frared sounder radiances

Moisture, mid/upper troposphere

MET-rad EUMETSAT geostationary satellite in-
frared sounder radiances

Moisture, mid/upper troposphere

AMSU-B Microwave sounder radiances Moisture, troposphere
MHS Microwave sounder radiances Moisture, troposphere
MERIS Differential reflected solar radiation,

retrievals
Total column water vapour

GPS-RO GPS radio occultation bending anglesTemperature, surface pressure
IASI Infrared sounder radiances Temperature, moisture, ozone
AIRS Infrared sounder radiances Temperature, moisture, ozone
AMSU-
A

Microwave sounder radiances Temperature

HIRS Infrared sounder radiances Temperature, moisture, ozone
ASCAT Microwave scatterometer backscatter

coefficients
Surface wind

MODIS-
AMV

US polar Atmospheric Motion Vectors,
retrievals

Wind, troposphere

Meteosat-
AMV

EUMETSAT geostationary Atmo-
spheric Motion Vectors, retrievals

Wind, troposphere

MTSAT-
AMV

Japanese geostationary Atmospheric
Motion Vectors, retrievals

Wind, troposphere

GOES-
AMV

US geostationary Atmospheric Motion
Vectors, retrievals

Wind, troposphere

PROFILERAmerican, European and Japanese
Wind profiles

Wind, troposphere

PILOT Radiosondes at significant level from
land stations

Wind, troposphere

DROP Dropsondes from aircrafts Wind, temperature, moisture, pressure,
troposphere

TEMP Radiosondes from land and ships Wind, temperature, moisture, pressure,
troposphere

AIREP Aircraft measurements Wind, temperature, troposphere
DRIBU Drifting buoys Surface pressure, temperature, mois-

ture, wind
SYNOP Surface Observations at land stations

and on ships
Surface pressure, temperature, mois-
ture, wind

Table 1: Observation type assimilated in September and October 2011. Number of observations per assimilation
cycle is∼5 106.

8 Lecture Notes: Data Assimilation



Observation Impact on Forecast

Fig. 2, the mean impact per individual observation is shown. In this case, the impact is independent from
the observation number. The largest mean contribution is provided by DROP and DRIBU (surface pres-
sure) observations, followed by the contribution of a second group of observations comprising MERIS,
AMVs, ASCAT, GPS-RO, SYNOP, TEMP, AMSU-B and AIREP. Contrary to the total forecast impact
that is largely provided by satellite observations, the largest per-observation impact is obtained from con-
ventional observations. The difference between the two impact measures is mainly due to difference in
observation accuracy through which a single conventional observation is on average more influential in
the analysis than a single satellite measurement.
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Figure 3: Variation of total Forecast Error Contribution inJune, July, August, September and October 2011 for
the different observation types.

The monthly variation of forecast impact is shown in Fig.3 per observation type and for June -October
2011. The only significant temporal variation is observed for AMSU-A with the largest forecast impact
in August and September, and for GPS-RO and IASI in July and August, respectively.

The AMSU-A forecast impact has been analyzed in more detail.In 4 the contribution of all channels
to the forecast error decrease is shown. Channel 8 has the largest overall impact and the stratospheric
channels (11-14) the smallest. There is no significant difference in performance between September and
October. The geographical distribution of mean forecast improvement or deterioration from channel 8
is shown in Fig.5 for September-October 2011. The METOP-A AMSU-A performance is compared
with that of NOAA-15 since they have a similar satellite orbit; nevertheless, there is a difference in the
measurement time since METOP-A crosses the equator at around 9:30 and NOAA-15 at 16:30. The
overall impact of the instrument on the two satellites is comparable. The geographical location of the
improvement instead differs quite substantially with the exception of the polar and central Southern
Hemisphere regions where both are performing similarly well. In the western part of the Southern
Hemisphere, METOP-A reduces the forecast error whilst NOAA-15 increases it; on the contrary, in the
eastern part, NOAA-15 shows a large and consistent improvement whereas METOP-A shows small areas
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assimilated channels and for September and October 2011.

of degradation. A similar impact pattern is observed for theTropics and Northern Hemisphere.
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Figure 5: Mean Forecast Error Contribution for AMSU-A channel 8 onboard METOP-A (left panel) and NOAA-15
(right) for the whole globe. Unit is Joule.

Once the area of degradation or improvement and the periods of interest are determined, the addition of
OSEs can help to determine the possible causes. For example,can be necessary to identify the explicit
contribution of AMSU-A channel 8 to the degradation over theAtlantic (METOP-A) or central Africa
(NOAA-15). The comparison between the experiment where channel 8 is not assimilated and the control
experiment (in which it s assimilated) will add informationfor the specific case and will help in evaluat-
ing suitability of the assimilation procedure for this data.

The variation of forecast impact with time for AMSU-A channel 8 is shown for the North Atlantic re-
gion in Fig. 6 (top panel). Again METOP-A (left panel) and NOAA-15 (right panel) are compared.
METOP-A shows much larger temporal variability than NOAA-15 and displays more events of detri-
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Figure 6: Daily variation of mean FEC (top panel), background (black line) and analysis (grey line) departure
(middle panel) and observation number (bottom panel) over the Atlantic region from September to mid November
2011 for METOP-A (left panel) and NOAA-15 (right panel) AMSU-A channel 8.
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Figure 7: Data coverage for METOP-A (top panel) and NOAA-15 (bottom panel) AMSU-A. The swath colour is
related to the measurement time from 21 UTC to 9 UTC.
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mental impact (positive values) than NOAA-15 that, except for a few occasions, performs rather well
over the entire period. The observation departures are alsodifferent: the departures with respect to the
background (black line middle panel) is smaller for METOP-A(on average 0.05 K) until the beginning
of October when the assimilation of METOP-A restarted aftera break of three days due to routine satel-
lite maintenance. After the 2nd of October, METOP-A background departures become smaller but the
largest absolute decrease (0.025 K) is observed instead forNOAA-15. And, from October onwards, the
observation departure from the analysis (grey line middle panel) becomes very similar (close to zero on
average) while before that day, NOAA-15 shows a small positive bias. Interestingly, the forecast reduc-
tion also changes: METOP-A shows larger variability than before and to a less extent also NOAA-15.
However, on average, as shown in Fig.5, the impact of the two satellites is quantitatively similarthough
different in terms of location. Over the Pacific, for example, METOP-A and NOAA-15 time series of
the forecast performance are more similar, with METOP-A showing also few large improvements (not
shown). The number of measurements provided by the two satellites is very similar (bottom panel). The
larger forecast error reduction of NOAA-15 with respect to METOP-A over the North Atlantic is due
to the measurement time ( Fig.7). In fact, NOAA-15 satellite cross the Atlantic close to 9 UTC which
corresponds to the end of the 12 hour assimilation window in the 4D-Var system used (Fig.7 light grey)
whilst the METOP-A platform is observing the Atlantic at thebeginning of the assimilation window
(Fig. 7 dark grey). Due to the evolution of the model error covariance matrixB across the assimilation
window, observations assimilated towards the end of the window are more influential than observations
assimilated at the beginning of the window.

4 Conclusion

Over the last few years, the potential of using derived adjoint-based diagnostic tools has been largely
exploited. Recently, a compact derivation of the 4D-Var sensitivity equations by using the theoretical
framework of the implicit function has been derived (Daescu2008). The analytical formulation of the
sensitivity equations with respect to an extended set of input parameters has been shown and numerical
applications will soon follow. This paper illustrates the use of the forecast sensitivity with respect to
time-distributed observational data, first time in a 12-hour 4D-Var assimilation system, as a diagnostic
tool to monitor the observation performance in the short-range forecast. The fundamental principles, on
which the forecast sensitivity diagnostic tool is based, are illustrated and an example of a routine diag-
nostic is provided.

The forecast sensitivity to observations can only be used todiagnose the impact on the short-range fore-
cast, namely for periods of 24 to 48 hours, given the use of theadjoint model and the implied linearity
assumption. The tool allows the computation and visualization of the impact for each assimilated mea-
surement and therefore the diagnostic can be performed fromlocal to global scales and for any period of
interest. The use the second-order sensitivity gradient isnecessary to identify the forecast impact of the
observations; in fact, the projected first-order sensitivity gradient only contains information on the sub-
optimality of the assimilation system. The tools characteristics have been explained: in particular, the
dependency of the tool on the verifying analysis used to compute the forecast error and the dependency
of the sensitivity tool on the scalar function representingthe global forecast error (energy norm). The
function of the global forecast error is first mapped onto theinitial conditions (using the adjoint operator
of the model forecast) and then into the observation space (using the adjoint operator of the analysis sys-
tem). The forecast error sensitivity of a specific measurement is transformed on forecast error variation
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via a scalar product with the innovation vector.

The global impact of observations is found to be positive andthe forecast errors decrease for all data
type when monthly averaged. In fact, due to statistical nature of the assimilation procedure, the observa-
tion impact must be averaged over a long enough period to be significant.

An example of observation impact monitoring has been shown and from the global performance as-
sessment the specific performance of one AMSU-A channel has been illustrated for two polar orbiting
satellites, namely METOP-A and NOAA-15 covering a similar orbit. The causes of degradation or im-
provement can be further investigated using Observing System Experiments.

Given the dependency of some observation types on the meteorological situation, it is suggested to run
the forecast sensitivity to the observation diagnostic tool on an operational basis and in relation to the
operational suite error. A constant monitoring of the performance of the model forecast would allow
the use of the observation network in an adaptive way where observations with negative impact can be
investigated and potentially denied in real time.
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