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Outline 
 
• The new fast waves solver of the COSMO model - 

consequences from the vertically stretched grid 

• An new analytic solution to test LAM and global dynamical cores 

• Influence of the water loading in strong convective situations 

• Staggered vs. Unstaggered grids  
… and what does this mean for discontinuous Galerkin methods 
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COSMO-EU GME  COSMO-DE 
&  -EPS 

      The operational Model Chain of DWD:  
GME, COSMO-EU and -DE 

hydrostatic 
parameterised convection 
∆x ≈ 20 km 
1482250 * 60 GP 
∆t = 66.7 sec., T = 7 days 

non-hydrostatic 
parameterised convection 
∆x = 7 km 
665 * 657 * 40 GP 
∆t = 66 sec., T = 78 h 

non-hydrostatic 
convection-permitting 
∆x = 2.8 km 
421 * 461 * 50 GP 
∆t = 25 sec., T = 27 h 

will be replaced 
by ICON in 2014 

will be replaced 
by ICON in ~2015 
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Revision of the current dynamical core 
 

- redesign of the fast waves solver 

Time integration scheme of COSMO dynamical core: 
 
Wicker, Skamarock (2002) MWR:  
split-explicit 3-stage Runge-Kutta 
 stable integration of 5th order upwind advection (large ∆T);  
these tendencies are added in each fast waves step (small ∆t) 
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D = div v 

‚Fast waves‘ processes (p'T'-dynamics): 

fu, fv, ... denote advection, Coriolis force and all physical parameterizations 

sound buoyancy artificial 
divergence damping 

stabil. whole RK-scheme 

Spatial discretization: centered differences (2nd order) 
Temporal discretization: horizontally forward-backward, vertically implicit 
 stability: Skamarock, Klemp (1992) MWR,  Baldauf (2010) MWR 
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Main changes towards the old fast waves solver: 
 

1. improvement of the vertical discretization:  
use of weighted averaging operators for all vertical operations 

2. divergence in strong conservation form  

3. optional: complete 3D (=isotropic) divergence damping 

4. optional: Mahrer (1984) discretization of horizontal pressure gradients 
 

additionally some 'technical' improvements; 
hopefully a certain increase in code readability 
 
overall goal: improve numerical stability of COSMO  

 new version fast_waves_sc.f90 contained in official COSMO 4.24 

M. Baldauf (2013) COSMO Technical report No. 21 (www.cosmo-model.org) 

M. Baldauf (DWD) 6 

http://www.cosmo-model.org/
http://www.cosmo-model.org/
http://www.cosmo-model.org/


Discretization in stretched grids 

Example:  calculate 1st derivative  ∂y/∂z  by an (at most) 3-point formula 
 ( tridiagonal solver) 
 
Approach 1: by weightings in ‚original space‘ 
 
 
 
 
(e.g. Ikeda, Durbin (2004) JCP) 
 
Approach 2: use of a coordinate transformation  zk = f(ζk),   ζk = k ∆ζ 
 

centered diff. 

zk-1 zk+1 zk 

y 

straightforward in unstaggered A-grid, 
less clear in staggered C-grid 
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Improvement of the vertical discretization 

Arithmetic average from half levels to main level: 

Weighted average from main levels to half level  

Derivatives always by centered differences (appropriate average used before) 

G. Zängl could show the advantages of weighted averages in the  
explicit parts of the fast waves solver. 
New: application to all vertical operations (also the implicit ones) 

M. Baldauf (DWD) 8 

COSMO: Half levels (w-positions) are defined by a stretching function zk = f(ζk);  
 Main levels (p‘, T‘-pos.) lie in the middle of two half levels 



How to inspect truncation errors in stretched grids? 
 
… by Taylor expansion  
 
Equidistant grids: let ∆x, …  0 (easy) 
 
Non-equidistant grids: infinitely many possibilites  
to refine the grid! 
 
Variant A. Define grid by a (fixed) stretching function  
 zk = f(ζk),   ζk = k ∆ζ,  
 then let ∆ζ  0  
 
important: grid becomes locally increasingly linear (locally nearly non-stretched) 
 
Variant B. Constant stretching ratio s between neighbouring grid cells: 
 
 
then let ∆z  0 

1/s ·dz 

dz 

s·dz 
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buoyancy term with weighted average of T' 
(T0  exact): 

buoyancy term with arithmetic average of T' 
(T0  exact): 

Buoyancy (~ g T'/T0)  –  grid stretching variant A 

Truncation error in stretched grids 
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buoyancy term with weighted average of T' 
(T0  exact): 

buoyancy term with arithmetic average of T' 
(T0  exact): 

buoyancy term with weighted average for T' and T0: 

Buoyancy (~ g T'/T0) - grid stretching variant B 

dz 

s·dz 

1/s ·dz 

Truncation error in stretched grids 

M. Baldauf (DWD) 12 



Divergence – grid stretching variant A 

Divergence with weighted average  
of u (and v) to the half levels: 

Divergence with only arithmetic average of u (and v) to the half levels: 

c 

Truncation error in stretched grids 

M. Baldauf (DWD) 13 



Divergence with weighted average  
of u (and v) to the half levels: 

Divergence with only arithmetic average of u (and v) to the half levels: 

Divergence – grid stretching variant B 

not a consistent discretization if s≠1 ! 

1/s ·dz 

dz 

s·dz 

Truncation error in stretched grids 
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Summary 
 
• New fast waves solver since COSMO 4.24 
• in operational use at DWD since 16 Jan. 2013 
• the higher numerical stability (in particular in steeper terrain) stems at least  

partly from a better and more consistent discretization in a vertically  
stretched grid 

• Remind: in a stretched and staggered grid not every information is contained  
in the metric coefficients. The relations between main and half levels influence 
the discretization 

• Proper derivation (use the exact positions of half and main levels!) 
of truncation errors helps in the decision in which way weightings should  
be used.  

M. Baldauf (2013) COSMO Technical report No. 21 (www.cosmo-model.org) 
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How can we check the correctness of the previous considerations? 
 

An analytic solution for linear gravity waves in a channel  
as a test case for solvers of the  

non-hydrostatic, compressible Euler equations 
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• Idealized standard test cases with (at least approximated) analytic solutions: 
• stationary flow over mountains  

linear: Queney (1947, ...), Smith (1979, ...) Adv Geophys, Baldauf (2008) COSMO-Newsl. 
non-linear: Long (1955) Tellus  for Boussinesq-approx. Atmosphere 

• Balanced solutions on the sphere: Staniforth, White (2011) ASL 
• non-stationary, linear expansion of gravity waves in a channel 

Skamarock, Klemp (1994) MWR for Boussinesq-approx. atmosphere 
• most of the other idealized tests only possess 'known solutions' gained  

from other numerical models. 

There exist even fewer analytic solutions which use exactly the same equations 
as the numerical model used, i.e. in the sense that the numerical model  
converges to this solution. One exception is given here:  
 linear expansion of gravity/sound waves in a channel 

Motivation 

For the development of dynamical cores (or numerical methods in general) 
idealized test cases are an important evaluation tool. 
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Non-hydrostatic, compressible, 2D Euler equations  
in a flat channel (shallow atmosphere) on an f-plane 

For analytic solution only one further  
approximation is needed: 
linearisation (= controlled  
approximation) around an  
isothermal, steady, hydrostatic 
atmosphere at rest (f≠0 possible)  
or with a constant basic flow U0 (and f=0) 

most LAMs using the compressible  
equations should be able to exactly use  
these equations in the dynamical core 
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Bretherton-, Fourier- and Laplace-Transformation  
 
Analytic solution for the Fourier transformed vertical velocity w 

The frequencies α, β are the 
gravity wave and acoustic 
branch, respectively, of the  
dispersion relation for 
compressible waves in a 
channel with height H; 
kz = (π / H) ⋅ m 

kx ⋅ cs
2 / g 

ω
 ⋅ 

c s
 / 

g 

β 

α m=0 

m=1 

m=2 

analogous expressions for ub(kx, kz, t), ...  

Baldauf, Brdar (2013) QJRMS 
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Linear, unsteady gravity wave 
initialization similar to Skamarock, Klemp (1994) MWR 
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Small scale test 
with a basic flow U0=20 m/s 
f=0 

Black lines: analytic solution 
(Baldauf, Brdar (2013) QJRMS) 
 
Shaded: COSMO 

Initialization similar to 
Skamarock, Klemp (1994) 
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Convergence test with vertically  
stretched grid 
 
initial condition for T' 
and grids  
for the first 3 resolutions 
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Convergence test with vertically stretched grid 
for old and new fast waves solver 

L2-error L∞-error 
T‘ 

old FW 

old FW 

new FW 

new FW 
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the improvement is best for coarse resolutions, because here the 
highest relative stretching for neighbouring grid boxes occurs 



The analogous linearized solution on the sphere … 

M. Baldauf (DWD) 24 



Non-hydrostatic, compressible, shallow atmosphere, adiabatic, 
3D Euler equations on a sphere with a rigid lid 

For an analytic solution only one further  
approximation is needed: 
linearisation (= controlled approximation)  
around an  
isothermal, steady, hydrostatic 
atmosphere 

most global models using the compressible  
equations should be able to exactly use  
these equations in the dynamical core 
for testing. 

Boundary conditions: 
w(r=rs) = 0 
w(r=rs+H) = 0  
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Analytic solution  
for the vertical velocity w (Fourier component with kz, spherical  
harmonic with l,m )  

The frequencies α, β are the 
gravity wave and acoustic 
branch, respectively, of the  
dispersion relation for 
compressible waves in a 
spherical channel of height H; 
kz = (π / H) ⋅ n 

l 

ω
 ⋅ 

c s
 / 

g β 

α 
n=0 

n=1 

n=2 

analogous expressions for ûlm(kz, t), ...  

Baldauf, Reinert, Zängl (2013) acc. by QJRMS 
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Test scenarios 
 

(A) Only gravity wave and sound wave expansion 

(B) Additional Coriolis force (,global f-plane approx. on a sphere‘)  
 2Ω (λ,φ) = f ⋅ er (λ,φ),   f=const.         (and v0 = 0) 
 test proper discretization of inertia-gravity modes, e.g.  
in a C-grid discretization. 
 For problems with C-grid discretizations on non-quadrilateral grids see 
 Nickowicz, Gavrilov, Tosic (2002) MWR,  
 Thuburn, Ringler, Skamarock, Klemp (2009) JCP, 
 Gassmann (2011) JCP 

(C) Additional advection by a solid body rotation velocity field  v0 = Q × r 
 test the coupling of fast (buoyancy, sound) and slow  
(advection, Coriolis) processes  
Problem: solid body rotation field generates centrifugal forces! 
Solution: Q = -Ω   similar to (A) in the absolute system 
 (analogous to Läuter et al. (2005) JCP) 
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in z=5 km (f=0) 

ICON   (joint development of DWD/MPI-M) 
simulation  

Small earth simulations 
Wedi, Smolarkiewicz (2009) QJRMS 
• rs= rearth / 50  ~ 127 km 

simulations with  ∆ϕ ~ 1°... 0.0625° 
  ∆x ~ 2.2 km ... 0.14 km  
 non-hydrostatic regime 

• for runs with Coriolis force: 
f = fearth ⋅ 10   ~  10-3 1/s 
 dimensionless numbers 

 Ro   = 0.2 ⋅ Roearth 

 f / N = 10 ⋅ fearth / N  ~ 0.05 

 Talk by G. Zängl 
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f=0 

f≠0 

Black lines: analytic solution 
Colours:     ICON simulation 

Time evolution of T‘ 

N Equ S 

test scenario (A) 

test scenario (B) 

M. Baldauf (DWD) 29 



f=0 

f≠0 

Black lines: analytic solution 
Colours:     ICON simulation 

Time evolution of T‘ 

test scenario (A) 

test scenario (B) 

M. Baldauf (DWD) 30 

N Equ S 



f=0 

f≠0 

Black lines: analytic solution 
Colours:     ICON simulation 

Time evolution of T‘ 

test scenario (A) 

test scenario (B) 
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f=0 

f≠0 

Black lines: analytic solution 
Colours:     ICON simulation 

Time evolution of T‘ 

test scenario (A) 

test scenario (B) 
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f=0 

f≠0 

Black lines: analytic solution 
Colours:     ICON simulation 

Time evolution of T‘ 

test scenario (A) 

test scenario (B) 
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f=0 

f≠0 

Black lines: analytic solution 
Colours:     ICON simulation 

Time evolution of T‘ 

test scenario (A) 

test scenario (B) 
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f=0 

f≠0 

Black lines: analytic solution 
Colours:     ICON simulation 

Time evolution of T‘ 

test scenario (A) 

test scenario (B) 

M. Baldauf (DWD) 35 

N Equ S 



f=0 

f≠0 

Black lines: analytic solution 
Colours:     ICON simulation 

Time evolution of T‘ 

test scenario (A) 

test scenario (B) 
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f=0 

f≠0 

Black lines: analytic solution 
Colours:     ICON simulation 

Time evolution of T‘ 

test scenario (A) 

test scenario (B) 
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• The ICON simulation with/without Coriolis force produces 
almost similar L2, L∞ errors 

• Spatial-temporal convergence order of ICON is ~ 1 
 

Convergence rate of the ICON model 

T‘ 

w‘ 
L2-error 

L∞-error 

T‘ 

w‘ 

test scenario (B) 
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Euler equations in spherical coordinates 

Test scenarios 
(A) Only gravity wave and sound wave expansion 
(B)   … 
(C)   Additional advection by a solid body rotation velocity field  v0 = Q × r 

  test the coupling of fast (buoyancy, sound) and slow  
 (advection) processes  
 Problem: solid body rotation field generates centrifugal forces! 
 Solution: Q = -Ω     similar to (A) in the absolute system 
  (analogous to Läuter et al. (2005) JCP) 

Most deep terms are 
needed now for the 
analytic solution! 
… but not all are 
contained in ICON 
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T‘ 

w‘ 

L2-error 

L∞-error 

T‘ 

w‘ 

Nevertheless: 
The missing deep terms 
in the horizontal 
equations are not visible 
until 0.0625°: ICON 
converges ~ 1st order 

Test scenario (C) with the ICON model 
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Summary 
 

• Analytic solution of the linearized, compressible, non-hydrostatic Euler equations  
on the sphere (for global models) and on a plane (for LAM‘s) have been derived  
 a reliable solution for a well known test exists and can be used not only for 
qualitative comparisons but even as a reference solution for convergence tests 

• This solution/test exercises several important processes/terms and the time 
integration scheme of the numerical model 

• On the sphere the test setup is quite similar to one of the DCMIP 2012 test cases 
• 'standard' approximations used: shallow atmosphere, 

‚global f-plane approx.‘ can be easily realised in every atmospheric model 
• only one further approximation: linearisation (=controlled approx.) 
• For fine enough resolutions ICON has a spatial-temporal 

convergence rate of about 1, no drawbacks visible 
• Such tests can be used to evaluate improved discretizations. 

Example: vertical discretizations in the new fast waves solver in COSMO 

References: 
Baldauf, Brdar (2013) QJRMS  (DOI:10.1002/qj.2105)   partly financed by  
Baldauf, Reinert, Zängl (2013)  accepted by QJRMS 
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Influence of the water loading in strong convective simulations 

Motivation: a bad forecast quality of  
COSMO-DE at 20 June 2013 
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‚nnew‘ Radar 
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Front coming in at evening;  
convergence line during afternoon with heavy precipitation 



‚nnew‘ Radar 
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Bug fix in the buoyancy term of COSMO: 

Moisture correction in the ideal  
gas law (water loading): 

RK-scheme with new fast waves solver: 
until COSMO 4.27: moisture variables qv, qc, … in qx at time level nnew 
bug fix : moisture variables qv, qc, … in qx at time level nnow 
   reason: during the RK scheme, nnew means ‚old‘ for the moisture variables! 
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COSMO-DE,  20 June 2013, 12 UTC run 
1h precipitation sum 

‚nnew‘ = old Radar ‚nnow‘ 

Front coming in at evening;  
convergence line during afternoon with heavy precipitation 

M. Baldauf (DWD) 46 



Radar ‚nnow‘ 

COSMO-DE,  20 June 2013, 12 UTC run 
1h precipitation sum 
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‚nnew‘ = old 



Radar ‚nnow‘ 

COSMO-DE,  20 June 2013, 12 UTC run 
1h precipitation sum 
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‚nnew‘ = old 



Radar ‚nnow‘ 

COSMO-DE,  20 June 2013, 12 UTC run 
1h precipitation sum 
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Radar ‚nnow‘ 

COSMO-DE,  20 June 2013, 12 UTC run 
1h precipitation sum 
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Radar ‚nnow‘ 

COSMO-DE,  20 June 2013, 12 UTC run 
1h precipitation sum 
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Radar ‚nnow‘ 

COSMO-DE,  20 June 2013, 12 UTC run 
1h precipitation sum 
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Radar ‚nnow‘ 

COSMO-DE,  20 June 2013, 12 UTC run 
1h precipitation sum 
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Radar ‚nnow‘ 

COSMO-DE,  20 June 2013, 12 UTC run 
1h precipitation sum 
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‚nnew‘ = old 



vertical velocity w [m/s] in z ~ 5 km 
‚nnow‘ 
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- T-perturbation ∆T=+2K in only 
one grid box (in z~500m)  

- Stratification analogous to  
Weismann, Klemp (1982) MWR 

- Atmosphere at rest 
- No turbulence,  

only cloud physics 
- Non-stretched grid 

 

Idealised convection test at the resolution limit of the model 
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graupel-scheme used (qv , qc , qi, qr , qs , qg ) 
1 h 1 h 

wmax  [m/s] cloud water qc  [0.01 g/kg] 

Idealised convection test at the resolution limit of the model 

M. Baldauf (DWD) 57 

‚nnew‘=old 

‚nnew‘=old 
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1 h 1 h 

rain qr  [0.01 g/kg] precipitation rate [mm/day] 

Idealised convection test at the resolution limit of the model 

graupel-scheme used (qv , qc , qi, qr , qs , qg ) 
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Summary 
 
• Convection-permitting models are quite sensitive to (among others) 

the treatment of the buoyancy term (not a new insight, of course) 
• The water loading contribution to the buoyancy is relatively large 

and even the ‚small‘ error of using moisture variables one time level 
too late has a strong influence in the evolution of convection 

• Experience: the largest improvements in weather forecasting stem  
from bug removals … 



Staggered vs unstaggered grids 
 
 
… and what does this mean for discontinuous Galerkin methods? 
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Dynamical core (Euler solver) developments in COSMO 

• Current Runge-Kutta dynamical core 
• further maintenance (DWD)  (~0.5 FTE) 
• higher order discretizations (Univ. Cottbus)  (~1 FTE) 

 
COSMO priority project ‚Conservative dynamical core (2008-2012): 
• EULAG as a candidate for the future COSMO dyn. Core 

 Ziemiański  et al. (2011) Acta Geophysica 
  Rosa et al. (2011) Acta Geophysica  
  Kurowski et al. (2011) Acta Geophysica 
  follow up PP ‚COSMO-EULAG operationalization  
      (2012-2015) (IMGW, Poland) (~3 FTE) 
• fully implicit FV solver ‚CONSOL‘ (CIRA, Italy)  (~0.5 FTE) 

Jameson (1991) AIAA 
 

Project in the framework of the German research foundation  
• Dynamical core based on Discontinuous Galerkin methods 

(DWD, Univ. Freiburg) (~1.08 FTE) 
 

1 FTE (full time equivalent) = 1 person/year 
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the last three dynamical core developments use an unstaggered (!) grid 
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Linear 1D wave equation as a prototype for hyperbolic equations 

continuous: 

unstaggered 

staggered: 

e.g. D. R. Durran: Numerical methods … 
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‚modified‘ wavenumber 

wave ansatz: 



Frequency ω Phase-, group-velocity 

unstaggered 

staggered 

grid 

Dispersion relation of the 1D wave equation 

vph 

vgr 

vph 

vgr 

k ∆x 

k ∆x 

k ∆x 

k ∆x 

ω ∆x/c 

ω ∆x/c 

ω=0 for 2∆x waves 

∆tstagg = ½ ∆tunstagg 

negative 
group 
velocity 
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1D wave expansion with a Discontinuous Galerkin (DG) discretization 

Literature: 
Hu, Hussaini, Rasetarinera (1999) JCP: 1D advection-, 2D wave-equation 
Hu, Atkins (2002) JCP: non-uniform grids  k=k(ω) 
Ainsworth (2004) JCP: multi-dim. advection equation 
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Discontinuous Galerkin (DG) methods in a nutshell 

From Nair et al. (2011) in ‚Numerical techniques … 

 weak formulation 
(increases solution space) 

Finite-element ingredient 

Finite-volume ingredient 

 ODE-system for q(k)   

Lax-Friedrichs flux 
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e.g. 
Cockburn, Shu (1989) Math. Comput. 
Cockburn et al. (1989) JCP 

e.g. Legendre-Polynomials 

 talk by F. Giraldo 



DG with p=0 
(=classical FV-method) 
 
 
dispersion relation is the 
same as for the  
2nd order cent. diff. scheme  
on an unstaggered grid 
+ 2nd order (hyper-)diffusion 

Re ω ∆x/c 

Im ω ∆x/c 

k ∆x 

k ∆x 
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DG with p=1    2 physically relevant (!) modes   (not spurious/parasitic mode) 

k ∆x 

Re ω ∆x/c 

Im ω ∆x/c 

k ∆x 
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DG with p=2  

frequency gap 

lowest mode has completely wrong  
behaviour near k ∆x=±π 
 α > 0.15 c necessary! 

α=0 α=0.11 c 

α=c 
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DG with p=0,1,2,3 
(α=c used) 

k ∆x 

k ∆x 

Re ω ∆x/c 

Im ω ∆x/c 

p max |ω|⋅∆x/c 

  0     1 

  1     3.9 

  2     7.51 

  3   11.83 

  4   16.86 

  5   22.58 

  6   28.96 

10   60.75 

15 113.68 

 max |ω| ∆x/c ≈ 1 + 2.6 p + 0.33 p² 
increases slightly stronger  
than linear with p. 
Choose not too large p! 
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Conclusions from 1D wave expansion with DG method: 
 
• Wave expansion with DG methods behaves as on an unstaggered grid,  

but with strong damping of short waves 
• There is no spurious (or ‚parasitic‘) mode in wave expansion: 

the dispersion relation is continuous and smooth until wavelength 2 dx / (p+1) 
if the numerical diffusive flux is not too small (but this is automatically fulfilled 
if α = max EV of f ‘(q) 

• Maximum of frequency increases slightly stronger than linear with p  
Choose not too large polynomial degree p 
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Thank you very much for your attention 
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