

Use of OGC Sensor Web Enablement Standards in the Meteorology Domain

in partnership with

Outline

Introduction to OGC Sensor Web Enablement Standards

- Web services
- Metadata encodings

SWE as front-end of METEO FRANCE Ground Obs. Network

- Use of modified 52° North software
- Lessons learned

Other Possible Uses of SWE in Meteorology

- Other observation types (buoys, radars, profilers and sounders...)
- Directly on sensor hardware
- Models and simulation

Introduction to SWE Standards

Sensor Web Enablement Framework

Heterogeneous Sensor Networks

Any type of sensors

Models and Simulations

Models of any scale and complexity

Sensor Web Enablement

- Discovery
- Data Access
- Asset Tasking
- Alerts and Notifications

Web services and encodings based on Open Standards (OGC, ISO, OASIS, IEEE)

Decision Support Tools

Vendor neutral, application specific tools based on generic software

SWE Components – Web Services

SWE Components – Metadata Encodings

O&M – Observation Centric Viewpoint

SensorML – Sensor System

SWE as front-end of METEO FRANCE

Ground Observations Network

Overall Architecture

Software Implementation

Built on SWE standards version 1.0

Based on 52° North SOS and SPS implementations

- Modified to reduce database size (several millions rows per day, total size of 500GB - 1 TB)
- Modified to reduce capabilities document size (Features of Interest and Procedures not listed)
- Added support for deletion/update of sensor stations
- Added support for new SWE Common data types (i.e. time)

Developed a SensorML profile + Dictionary

- Description of stations and all installed sensors
- Model with separate sampling points (airport runways)

Lessons Learned

- **☑** Successfully adapted to cover our use-cases
- ☑ SWE models well adapted to describe ground stations, sensors and observations
- ☑ Could not use existing server implementation

 "out-of-the-box" (customization and improvements necessary)

Concept of capabilities document not adapted for large networks

Other Possible Uses

of SWE in Meteorology

SWE in Atmospheric Sciences

SWE Common encoded data visualized in Space Time Toolkit

SWE in Earth Observation

SWE on Sensor Hardware

New station model easily inserted in the network

SWE on chip

More and more powerful single board computers (such as ARM powered Raspberry Pi)

SWE for Simulation and Models

Thank you for your attention. Any questions?

alex.robin@sensiasoftware.com