
OOPS as a common framework for
Research and Operations

Yannick Trémolet, Alfred Hofstadler and Willem Deconinck

ECMWF 14th Workshop on
Meteorological Operational Systems

18-20 November 2013

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013

Introduction

Forecasting systems are becoming better but more and more complex:
I Single analysis and single forecast,
I Ensemble forecasts,
I Flow dependent background errors from Ensemble Data Assimilation.

Transition between Research and Operations is currently based on common
SMS/ecFlow framework

I Research suites are generated by PrepIFS as part of an experiment
I Research experiments are re-engineered into (e-) suites for Operations
I Transition is getting more complex and time consuming with increased

complexity of suites

Complexity will keep increasing in the future:
I Long overlapping 4D-Var windows,
I Hybrid data assimilation (EDA and DA coupled two-ways),
I Coupled ocean-atmosphere models...

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 1 / 12

From Research to Operations

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 2 / 12

The OOPS Project

The complexity of the IFS code is more and more difficult to manage.

New scientific and technical (scalability) developments require a more flexible
data assimilation system.

We have started re-factoring the IFS into the Object-Oriented Prediction
System (OOPS).

The scripts and suite definitions will be affected:
I The outer loop of 4D-Var will be moved inside the C++ layer,
I The Fortran namalists will have to be replaced, at least partially, by more

flexible technology (XML, JSON).

The suite definitions and scripts define the application at the highest level.
I We should think of them as part of the “system”.

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 3 / 12

OOPS Suites and Scripts

Like the Fortran code, the suite definitions and scripts have become more and
more difficult to maintain and develop.

Three levels are mixed together in the suite definitions and scripts:
I The model (IFS, NEMO...), although the top level of OOPS is generic,
I The “scientifc” description of the cycling,
I The workflow “technical” specificity (SMS or ecflow).

The three levels could be, and should be, isolated from each other.

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 4 / 12

Example: Analysis and forecast cycling

dassim = oops4dvar(userConfig)
Bmatrix = mars.retrieve(Bconfig)

for date in daterange(fcycle , lcycle , step):
obs = mars.retrieve(date , obsConf)
background = mars.retrieve(fc(date -step , step))

an = dassim.run(obs , background , Bmatrix)

fc = forecast.run(an)

mars.archive(an)
mars.archive(fc)

The cycling is independent of the model.

B can be flow dependent.

B can be computed on the fly by an EDA system.

On its own, the cycling algorithm is relatively easy to describe.

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 5 / 12

Example: Analysis and forecast cycling

dassim = oops4dvar(userConfig)

for date in daterange(fcycle , lcycle , step):
obs = mars.retrieve(date , obsConf)
background = mars.retrieve(fc(date -step , step))
Bmatrix = mars.retrieve(date , Bconfig)

an = dassim.run(obs , background , Bmatrix)

fc = forecast.run(an)

mars.archive(an)
mars.archive(fc)

The cycling is independent of the model.

B can be flow dependent.

B can be computed on the fly by an EDA system.

On its own, the cycling algorithm is relatively easy to describe.

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 5 / 12

Example: Analysis and forecast cycling

Initializations not shown ...
for date in daterange(fcycle , lcycle , step):

edate = date -step
for member in EDA:

edaobs = perturb(obs)
edabg = mars.retrieve(edafc[member](edate -step , step))
edafc[member] = dacycle.run(edaobs , edabg , Bmatrix , config)

Bmatrix = Covariance.estimate(edafc)

obs = mars.retrieve(date , obsConf)
background = mars.retrieve(fc(date -step , step))
dacycle.run(obs , background , Bmatrix , daConfig)

The cycling is independent of the model.

B can be flow dependent.

B can be computed on the fly by an EDA system.

On its own, the cycling algorithm is relatively easy to describe.

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 5 / 12

Example: Analysis and forecast cycling

dassim = oops4dvar(userConfig)
Bmatrix = mars.retrieve(Bconfig)

for date in daterange(fcycle , lcycle , step):
obs = mars.retrieve(date , obsConf)
background = mars.retrieve(fc(date -step , step))

an = dassim.run(obs , background , Bmatrix)

fc = forecast.run(an)

mars.archive(an)
mars.archive(fc)

The cycling is independent of the model.

B can be flow dependent.

B can be computed on the fly by an EDA system.

On its own, the cycling algorithm is relatively easy to describe.

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 5 / 12

Abstracting the workflow

dassim = oops4dvar(userConfig)
Bmatrix = mars.retrieve(Bconfig)

for date in daterange(fcycle , lcycle , step):
obs = mars.retrieve(date , obsConf)
background = mars.retrieve(fc(date -step , step))

an = dassim.run(obs , background , Bmatrix)

fc = forecast.run(an)

mars.archive(an)
mars.archive(fc)

On its own, the cycling algorithm is relatively easy to describe.

And there is enough information to generate all the triggers!

Why are we writing them by hand?
I We are duplicating information.
I It is difficult to maintain and modify.
I The risk of bugs is increased.

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 6 / 12

Prototype: PyOOPS

A prototype has been implemented in python to test the approach.

The system is organised around tasks whose input and outputs are metadata
objects.

The metadata objects are also used by the workflow to generate the triggers.

class ForecastModel(Task):

def constructor(self):
self.add_input(’init’)
self.add_output(’fc’)
self.add_variable(’length ’)
self.add_variable(’steps’)

def execute(self):
analysis = self.input(’init’)
forecast = MetaData(type = ’fc’,

date = analysis.valid_time ,
steps = self.variable(’steps’),
window_end = analysis.window_end)

""" code here that configures and executes the model """

self.set_output(’fc’, forecast)

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 7 / 12

Prototype: 4D-Var Analysis Cycle

Tasks are used as
building blocks to
compose complex
structures

Analysis example

fetch_obs
<Retrieve>

bgfc
<GetBackground>

4dvar
<Analysis4dvar>

archive_fb
<Archive>

archive_bg
<Archive>

window

window

obs

bg

an

fb

<Analysis>

an

class Analysis(CompositeTask):

def constructor(self):

self.add_input(’window ’)

self.add_output(’an’)

self.fetch_obs

= self.add_task(Retrieve(’fetch_obs ’))

self.bgfc

= self.add_task(GetBackground(’bgfc’))

self.an4dvar

= self.add_task(Analysis4dvar(’4dvar’))

self.archive_bg = self.add_task(Archive(’archive_bg ’))

self.archive_fb = self.add_task(Archive(’archive_fb ’))

def compose(self):

window = self.input(’window ’)

bg = self.bgfc(window=window)

obs = self.fetchobs(window=window)

(an ,fb) = self.an4dvar(bg=bg , obs=obs , window=window)

self.archive_bg(data=bg)

self.archive_fb(data=fb)

self.set_output(’an’, an)

...

datesetup = DateSetup(’datesetup ’)

analysis = Analysis(’analysis ’)

window = datesetup(date=’2013 -07 -02 T00 :00:00Z’)

an = analysis(window=window)

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 8 / 12

Prototype with QG toy-model and ecFlow

class Analysis(CompositeTask):

def compose(self):

window = self.input(’window ’)

bg = self.bgfc(window=window)

obs = self.fetchobs(window=window)

(an ,fb) = self.an4dvar(bg=bg , obs=obs ,

window=window)

self.archive_bg(data=bg)

self.archive_fb(data=fb)

self.set_output(’an’, an)

Note that GetBackground is a composite task as well!

The workflow (ecFlow) is abtracted from the suite definition.
I Should we call it ezFlow?

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 9 / 12

Abstracting the workflow

Scientists should think as if writing any algorithm.

Executing the (python) code generates the suite (and scripts).
I Each component can generate a single task or a family.
I The workflow is chosen when running the python program.
I A simple workflow can run the tasks on the fly (toy system on a laptop).

The workflow can be specialized for Operations to control when the
observations are retrieved and the analysis cycle started.

Everything else is the same: More can be shared between RD and OD.

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 10 / 12

Future Framework

OOPS provides a common generator for both Research and Operations suites

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 11 / 12

Summary

The OOPS prototype is working in research mode
I with toy models (Lorenz, QG),
I for (simple) forecast experiments with the IFS.

Next steps:
I port all suites to the new framework (the bulk of the work is in identifying all

the inputs and outputs of each task in the current system),
I implement the OD mode.

Potential:
I for RD to express complex algorithms in a sustainable way,
I for OD to implement these algorithm faster and with less risk of errors.

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 12 / 12

