CCECMWF

OOPS as a common framework for
Research and Operations
Yannick Trémolet, Alfred Hofstadler and Willem Deconinck

ECMWF 14* Workshop on
Meteorological Operational Systems

18-20 November 2013

Trémolet, Hofstadler, Deconinck OO0OPS 18 November 2013

P oa
Introduction SECMWF

@ Forecasting systems are becoming better but more and more complex:

> Single analysis and single forecast,
» Ensemble forecasts,
» Flow dependent background errors from Ensemble Data Assimilation.

@ Transition between Research and Operations is currently based on common
SMS/ecFlow framework
> Research suites are generated by PreplFS as part of an experiment
> Research experiments are re-engineered into (e-) suites for Operations
> Transition is getting more complex and time consuming with increased
complexity of suites

o Complexity will keep increasing in the future:

» Long overlapping 4D-Var windows,
> Hybrid data assimilation (EDA and DA coupled two-ways),
» Coupled ocean-atmosphere models...

Trémolet, Hofstadler, Deconinck OO0PS 18 November 2013 1/12

From Research to Operations

CCECMWF

OPERATIONS

|

Operations
suites

RESEARCH

PrepIFS web interface

&

XCdp

i

Research suites

Trémolet, Hofstadler, Deconinck

OOPS

18 November 2013

2/12

The OOPS Project SCECMWF

@ The complexity of the IFS code is more and more difficult to manage.

o New scientific and technical (scalability) developments require a more flexible
data assimilation system.

@ We have started re-factoring the IFS into the Object-Oriented Prediction
System (OOPS).

@ The scripts and suite definitions will be affected:

» The outer loop of 4D-Var will be moved inside the C++ layer,
» The Fortran namalists will have to be replaced, at least partially, by more
flexible technology (XML, JSON).

@ The suite definitions and scripts define the application at the highest level.
> We should think of them as part of the “system”.

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 3/12

OOPS Suites and Scripts SSECMWF

@ Like the Fortran code, the suite definitions and scripts have become more and
more difficult to maintain and develop.

@ Three levels are mixed together in the suite definitions and scripts:

» The model (IFS, NEMO...), although the top level of OOPS is generic,
» The “scientifc” description of the cycling,
» The workflow “technical” specificity (SMS or ecflow).

@ The three levels could be, and should be, isolated from each other.

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 4 /12

Example: Analysis and forecast cycling

CCECMWF

dassim

obs

an =

fc =

Bmatrix

mars .
mars .

= mars.retrieve

oops4dvar (userConfig)

(Bconfig)

for date in daterange(fcycle, lcycle, step):

mars.retrieve(date, obsConf)

dassim.run(obs,
forecast.run(an)

archive (an)
archive (fc)

background = mars.retrieve(fc(date-step,

background, Bmatrix)

step))

@ The cycling is independent of the model.

Trémolet, Hofstadler, Deconinck OO0OPS

18 November 2013

5/12

Example: Analysis and forecast cycling

CCECMWF

dassim = oops4dvar (userConfig)
for date in daterange(fcycle, lcycle, step):
obs = mars.retrieve(date, obsConf)
background = mars.retrieve(fc(date-step, step))
Bmatrix = mars.retrieve(date, Bconfig)
an = dassim.run(obs, background, Bmatrix)

fc = forecast.run(an)

mars.archive (an)
mars.archive (fc)

@ The cycling is independent of the model.

@ B can be flow dependent.

Trémolet, Hofstadler, Deconinck OO0OPS

18 November 2013

5/12

Example: Analysis and forecast cycling

CCECMWF

Initializations not shown...
for date in daterange(fcycle, lcycle, step):
edate = date-step
for member in EDA:
edaobs = perturb(obs)

edafc[member] = dacycle.run(edaobs, edabg,
Bmatrix = Covariance.estimate(edafc)

obs = mars.retrieve(date, obsConf)

edabg = mars.retrieve(edafc[member](edate-step, step))

background = mars.retrieve(fc(date-step, step))
dacycle.run(obs, background, Bmatrix, daConfig)

config)

@ The cycling is independent of the model.
@ B can be flow dependent.

@ B can be computed on the fly by an EDA system.

Trémolet, Hofstadler, Deconinck OOPS

18 November 2013

5/12

Example: Analysis and forecast cycling

CCECMWF

dassim = oops4dvar (userConfig)
Bmatrix = mars.retrieve(Bconfig)

for date in daterange(fcycle, lcycle, step):

mars .
mars .

archive (an)
archive (fc)

obs = mars.retrieve(date, obsConf)

background = mars.retrieve(fc(date-step, step))
an = dassim.run(obs, background, Bmatrix)

fc = forecast.run(an)

The cycling is independent of the model.

@ B can be flow dependent.
@ B can be computed on the fly by an EDA system.

@ On its own, the cycling algorithm is relatively easy to describe.

Trémolet, Hofstadler, Deconinck OOPS

18 November 2013 5/12

Abstracting the workflow

CCECMWF

dassim

obs

an =

fc =

Bmatrix

for date in daterange (fcycle,

mars .
mars .

= oops4dvar (userConfig)
= mars.retrieve(Bconfig)
lcycle, step):

mars.retrieve (date, obsConf)

background = mars.retrieve(fc(date-step,

dassim.run(obs, background, Bmatrix)
forecast.run(an)

archive (an)
archive (fc)

step))

@ On its own, the cycling algorithm is relatively easy to describe.
@ And there is enough information to generate all the triggers!

@ Why are we writing them by hand?

> We are duplicating information.
> It is difficult to maintain and modify.
> The risk of bugs is increased.

Trémolet, Hofstadler, Deconinck OOPS

18 November 2013

6/ 12

Prototype: PyOOPS

CCECMWF

@ A prototype has been implemented in python to test the approach.

@ The system is organised around tasks whose input and outputs are metadata
objects.
@ The metadata objects are also used by the workflow to generate the triggers.
class ForecastModel (Task):
def constructor (self):
self.add_input (’init’)
self.add_output (’fc’)
self.add_variable(’length’)
self.add_variable(’steps’)
def execute(self):
analysis = self.input(’init’)
forecast = MetaData(type = ’fc’,
date = analysis.valid_time,
steps = self.variable(’steps’),
window_end = analysis.window_end)
""" code here that configures and executes the model """
self.set_output(’fc’, forecast)
B b e

7/12

Prototype: 4D-Var Analysis Cycle

Tasks are used as
building blocks to
compose complex
structures

Analysis example

| fetch_obs 5|
<Retrieve> an
4d

ivar
wndow <Analysisddvar>

window | [*
<Analysis> hrehive>

Trémolet, Hofstadle

CCECMWF

class Analysis(CompositeTask):

def constructor(self):
self.add_input (’window’)
self.add_output (’an’)

self.fetch_obs
= self.add_task(Retrieve(’fetch_obs’))
self.bgfc
self.add_task(GetBackground(’bgfc’))
self.anddvar
self.add_task(Analysis4dvar (’4dvar’))

self.archive_bg = self.add_task(Archive(’archive_bg’))
self.archive_fb = self.add_task(Archive(’archive_fb’))

def compose(self):
window = self.input(’window’)

bg = self.bgfc(window=window)

obs = self.fetchobs(window=window)

(an,fb) = self.anddvar(bg=bg, obs=obs, window=window)
self.archive_bg(data=bg)

self.archive_fb(data=£fb)

self.set_output(’an’, an)

datesetup = DateSetup(’datesetup’)
analysis = Analysis(’analysis’)

window = datesetup(date=’2013-07-02T00:00:00Z’)
an = analysis(window=window)

OOPS 18 November 2013

8/ 12

Py
Prototype with QG toy-model and ecFlow SCECMWF

Flle Edit Show Servers Windows Help |
2013-09-17 18:17.22 BRI FEENMEEEREE
st naws}- go_exp - ancel T
izl i class Analysis(CompositeTask):
dateloop |- dates=... 2013-07-02T00:00:00Z 2013-07-02T12:00:002
latesetup |— M window def compose (self):
an man i - i i ,
T window = self.input (’window’)
bglc Hig X ;
Setbg il et bg = self.bgfc(window=window)
s obs = self.fetchobs (window=window)
A} mw (an,fb) = self.an4dvar (bg=bg, obs=obs,
Wan window=window)
ECIEEN] self.archive_bg(data=bg)
archive o) self.archive_fb(data=fb)
i L 113
effcclata |- setected
EETCHSE s self.set_output(’an’, an)
model|— W1
archive_an
archive_fc |

= I

@ Note that GetBackground is a composite task as well!

@ The workflow (ecFlow) is abtracted from the suite definition.
> Should we call it ezFlow?

émolet, Hofstadler, Deconi

18 November 2013 9/12

Py
Abstracting the workflow SCECMWF

@ Scientists should think as if writing any algorithm.

Executing the (python) code generates the suite (and scripts).
» Each component can generate a single task or a family.
» The workflow is chosen when running the python program.
» A simple workflow can run the tasks on the fly (toy system on a laptop).

The workflow can be specialized for Operations to control when the
observations are retrieved and the analysis cycle started.

Everything else is the same: More can be shared between RD and OD.

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 10 / 12

Future Framework

CCECMWF

OPERATIONS

RESEARCH

web interface ecFlowview

Operations suites

Research suites

OOPS provides a common generator for both Research and Operations suites

Trémolet, Hofstadler, Deconinck OOPS

18 November 2013

11 /12

CCECMWF
Summary

@ The OOPS prototype is working in research mode

» with toy models (Lorenz, QG),
» for (simple) forecast experiments with the IFS.

@ Next steps:

» port all suites to the new framework (the bulk of the work is in identifying all
the inputs and outputs of each task in the current system),
> implement the OD mode.

@ Potential:

» for RD to express complex algorithms in a sustainable way,
» for OD to implement these algorithm faster and with less risk of errors.

Trémolet, Hofstadler, Deconinck OOPS 18 November 2013 12 /12

