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1 Introduction

Particle filters are an appealing class of data-assimilat@zhniques because of their simplicity and
their generality for nonlinear and non-Gaussian probleiftsey have seen wide use in fields outside
atmospheric science and oceanography (see Doucet et al). ZDBere have also been initial efforts

for applications in oceanography (van Leeuwen 2003) and-tamface modeling (Zhou et al. 2006).

Further introduction to and background on patrticle filteas be found in Gordon et al. (1993), Doucet
et al. (2001), Arulampalam et al. (2002), van Leeuwen (2@0@) Boucquet et al (2010).

Particle filters are a sequential Monte-Carlo technique @ardbe shown to produce an ensemble of
states drawn from the correct posterior distribution astimemble siz&le — . (See Doucet 1998 for

a rigorous demonstration.) If there were sufficient comqmutd run ensemble forecasts with arbitrarily
large N, then implementation of particle filters would be straightfard and the results general. In
practice, the ensemble size is limited, and we expect tha¢ members will be necessary as the system
dimension increases. All applications of the particle ffite far, however, involve systems whose state
space is either explicitly or effectively low dimensiondlhus, the effectiveness of particle filters for
high-dimensional systems remains an open question.

For the simplest “bootstrap” particle filter, in which eactember (or particle) is evolved under the
system dynamics and assigned a weight proportional tokbEHbod of the new observations given that
member. WheN, is too small, one of the weights will approach unity and theitebe a corresponding
deterioration of the performance of the filter. Snyder e(2008; also Bengtsson et al. 2008, Bickel et
al. 2008) demonstrate, under reasonably general assumaptlmat avoiding such degeneracy requires
Ne to grow exponentially withr?, the variance of the total log likelihood of the observasigiven the
state. Thouglt? need not be directly related to the system dimension, it eaexpected to grow with
the system dimension in the most interesting case, nametywie number of degrees of freedom with
significant variance also grows with the system dimension.

Sequential importance sampling is often employed in darfitters (Doucet et al. 2000) but was not

included in the analysis of Snyder et al. (2008). Rather tisimg evolution under the system dynamics
to generate ensemble members at later times, as in the fagofiter, one has the freedom to chose
the distribution from which later members are drawn, as lasighis is accompanied by an appropriate
modification of the weights assigned to each member. Thekdigon from which new members are

drawn is known as the proposal distribution.

The present paper reviews sequential importance sampiith¢he so-called “optimal” proposal, which
incorporates the new observations at tip&hen generating the ensemble members valig. aflt is
worth emphasizing from the outset the potential for comfusn the terminology "optimal proposal.”
The optimal proposal is is optimal only in a very restrictedse.) In the geophysical literature, several
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variants of particle filters have been proposed that cagetain the idea of using the new observations
when generating members (van Leeuwen 2010, Papadaki2€tl#l, Morzfeld et al. 2011). The result-
ing algorithms either approximate the optimal proposdrithistion (Papadakis et al. 2010), reduce to it
in specific cases (Morzfeld et al. 2011) or are closely rel§tan Leeuwen 2010). | present a simple
example showing that the optimal proposal can greatly oftipa simply evolving the existing ensem-
ble members t&x under the system dynamics (which I will term the standarghpsal). The arguments
of Snyder et al. (2008) can be applied to the optimal propasdlcan quantify these benefits. Never-
theless, the same arguments also demonstrate that theecegnsemble size again grows exponentially
for the optimal proposal, in this case as exponentiallyf the variance of the log likelihood of the
observations given the state at fhrevioustime.

Particle-filter algorithms typically also include a resdimg step, after the update of each member’s
weight. Given the latest members and updated weights, a nsenble is drawn from the distribution
implied by the members and their weights (or a smooth estirofit). The result is a new ensemble
with uniform weights and members replicating or clustenemiad locations where the updated weights
were formerly large. Since they are based on the empirig#iillition implied by the updated weights,
resampling schemes cannot repair deficiencies in the thegghts and will not be discussed further
until the concluding section.

2 Background on particle filters and sequential importance ampling

2.1 Basics of particle filters
Let xx = x(tx) of dimensionNy be the state of the system at titpeSuppose that evolves according to

Xk = f(Xk_1, Mk-1), (1)

and that the observation = y(tx) of dimensionNy is related to the state by

Yk = h(Xk) + &, (2)

whereny andgg are each i.i.d. random variables forlatind, for simplicity, are mutually independent. It
will be convenient to denote with the subscrijph the vector obtained by concatenating the observation
vectors at times, ..., t; for exampley;. is the concatenation of observation vectors at titpes. , t.

Formally, our goal is to calculate the filtering density (tis the conditional probability density of
given observationy, ..., Yyx up to timety) via Bayes rule,

— PUyk[Xk) P(Xk|Yox-1)
POxklyoi) = P(Yk|Yok-1) 3

Since all pdfs in what follows will be conditioned opk_1, we will omit those observations in the
sequel when writing the condition statements.

Direct computation with the pdfs in (3) is not feasible usliigandN, are small or the problem has other
simplifying structure. Particle filters are Monte-Carlo theds that instead work with finite, weighted
ensembles{x}(,w'k;i =1,...,Ne} that approximate the desirguxy|yk) in the sense that a weighted sum
over the ensemble members converges to an expectationesjtlat tap(xx|yk):

Ne .
_ZV\"kQ(XL)—> / g(xk) p(xk|yk) dxx  asNe — . (4)
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2.2 Sequential importance sampling

Particle-filter algorithms may be cast in terms of sequéitiportance sampling. To understand impor-
tance sampling, suppose we are given two distributjofxg and 71(x), together with a random sample
{x,i =1,...,Ne} from m(x). Defining weightsv' = p(x')/m(x'), the weighted sampléx',w'} then
approxmatesp(x) in the sense of (4). This is useful if(x) is difficult to sample from whiler(x) is
easy. The distributionp(x) and(x) are known as thtargetand theproposalrespectively. See Doucet
(1998) and Arulampalam et al. (2002) for further introdaotsequential importance sampling.

Sequential importance sampling proceeds sequentiallynig tomputing at each time a weighted sam-
ple {x,,wi} that approxmatesp(xk\yk) It is sufficient to consider the step frai 1 to ty, in which we
start from{xk LW, .} and compute{xk, k} The idea is to apply importance sampling to the joint
conditional distributionp(Xk—1, Xk|Yk)-

We choose a proposal density of the form

TT(Xk—1, Xk|Yk) = TT(Xk—1) TT(Xk|Xk_1, Yk (5)

whereT(xx_1) is the proposal density from_; and r1(Xk|Xk_1,Yk) remains to be specified. Sampling
from 7(Xk—1,Xk|Yk), when it has the form (5), can be achieved simply by draw[g‘fgom 1i( xk|xk 1 YK);
the paw(xk 1,xk) is a therefore random draw fromi(xx_1,Xk|yk) Since we have assumeq , was
drawn from7(Xx_1).

The corresponding importance weight is given by

POl XYk Pl g X Yk)
(X1 XiYi) TG 1) TG X, Yk)

W, O (6)

The constant of proportionality is determined by requinihgtzvv}( = 1. Applying Bayes rule and the
definition of a condtional density, the joint conditionaihnddy may be written as

P(Xk—1,Xk[Yk) = P(Yk[Xk) P(Xk—1,Xk) = P(Yk|Xk) P(Xk|Xk-1) P(Xk-1)- (7)
Substituting (7) in (6) yields

w0 P(yk|Xi) p(XiIxt 1)

LS W g, 8
Ty ®)

sincew,_; = p(Xj_1)/ (X _1)-

Sequential importance samplingtathus proceeds in two steps: First, drawing a random sa{erLq}
from the chosen proposal distribution and, second, upglgie weightv,_, associated with each mem-
ber, orparticle, via (8). The update of the weights is sequential in the straeat uses onlyy, xL_l and
vv"kfl, and no information from times earlier than 1. This simplification follows from the assumptions
that the dynamics (1) is Markovian (that ig depends only omy 1) and the observation equation (2)
atty depends only oR.

The performance of importance sampling depends strongh@mchoice of the proposal distribution.
Frequently, the transition distribution for the dynamissised,

TT(Xk|Xk—1,Yk) = P(Xk[Xk-1)- (9)

The partic':lesx‘k are a random draw from the prior distributiqaixy) and can be generated simply by
evolvingx,_, forward under the system dynamics. The weights are thertegde multiplying by the
observation likelihood for each member,

W = P(YK X)W1 (10)
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Figure 1. Atwo-dimensional example of importance samplisigg the proposal (10). (a) The prior
pdf (the proposal; contours) and a sample from that pdf (dgty The posterior pdf (contours) given
an observation y= x; + € = 1.1, wheree ~ N(0,1), and the weighted particles, shown as circles
with radius proportional to fy|x).

This is the case considered by Snyder et al. (2008). | witht€d) thestandardproposal.

Figure 1 illustrates how importance sampling works in a timensional example and using the stan-
dard proposal. The prior pdf (the proposal) and a samplezef 500 from that proposal are shown in
Fig. 1a. (In a slight abuse of previous notation,andx, are the two components of the state vector
X.) We are given a observatign= x; + € = 1.1 of the first component contaminated by Gaussian noise
of zero mean and standard deviation 1. The posterior pdfasnshin Fig. 1b, together with circles

at the locations of the particles and having radius propoati to p(y|x). Although the ensemble was
drawn from the proposal distribution, it represents theqras well after weighting byp(y|x), since the
posterior is proportional to the product of the proposale® p(y|x).

Another possible choice for the proposal distribution is

TH(XkXk—1, Yk) = P(Xkc|Xk—1, k), (11)
with weights updated according to ' _ _
Wi = P(Yk[Xk_1)Wi_1- (12)
Equation (12) is derived by using Bayes rule and the factytfja is independent ofy_1 to write
P(Xik[Xk—15 Yi) = P(Yi[Xi) P(Xk[Xk—1) / P(Yk[Xk—1),

and substituting this result into (8). Unlike the standamppsal (9), this proposal depends on the new
observationgy; generating samples from (11) is therefore more closebtedlto data assimilation than
to ensemble forecasting, which (9) mimics. In addition, Wedghts at timey are independent of the
sample{xL} drawn from the proposal; instead, they depend on the p&m{igh from the previous time.

In the patrticle-filtering literature, (11) has come to bewnas the “optimal” proposal. This terminol-
ogy can be confusing, as the optimality dows refer to the performance of the resulting particle filter.
Instead, (11) is optimal in the sense that it achieves thénmaim variance of/v}( over different random
draws ofx!, since by (12w, is independent ofl, and so that variance is zero.

2.3 Sampling from the optimal proposal

In contrast to the standard proposal, sampling frgik|Xx—1, Yk) is hontrivial in general, because of the
conditioning onyx. Morzfeld et al. (2011) present an approach that relies @mfban efficient means
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to find the mode ofp(xk|xk-1,Yk). For the purposes of this paper, it suffices to examine a nedbp
general setting in which analytic expressions figxy|xx—1, k) are available.

Analytic progress is possible when the system and observabise are additive and Gaussian, and the
observation operator is linear. Let the system be

Xk =M(Xk-1) + Nk, Yk = HXk + &, (13)
with N, ~ N(0,Q) andg ~ N(0,R).
In that case, as discussed in Doucet et al. (2000),
Xk|Xk—1, Yk ~ N(Xk, P), (14)

where
Xk = (I —KH)xx_1+Kyx, P=(1—-KH)Q (15)

with K = QHT(HQHT + R)~1. To see this, note that the system dynamics imply st 1 ~
N(M(xk-1),Q); conditioning onyk can then be achieved by applying Bayes rule using the stdndar
Kalman-filter update for a prior with covarian€g. Thus, the optimal proposal becomes a Gaussian
with mean and covariance given by (15).

The weights also have an analytic expression, since (13xiately implies that
Yk/X—1 ~ N (HM(x1),HQHT +R). (16)

The updated Weighl\sﬁi(, given by (12), are thus obtained by evaluatingathe pdf for a Gaussian of
meanHM(x}_,) and covariancéiQH T +R.

3 Behavior of the weights in a simple example

A common issue in particle filtering is the tendency for onea dew of the weights to be much larger
than the rest. This phenomenon is knowrdageneracy It can occur spuriously, owing to sampling
variability in the algorithm, and in that case the weightadple will be a poor approximation to the
posterior pdf. Much of the subtlety of particle-filter algbms, including the choice of proposal, centers
on avoiding this degeneracy. This section illustrates tioblpm for both the standard proposal and the
optimal proposal.

Consider the simple system in which
Xq=aXk-1+Mk-1, Yk=Xk+ &, (17)

with a > 0 a scalarjjx_1 ~ N(0,¢?l) and & ~ N(0,1). Each element of the state vector evolves and
is observed independently and both the system dynamicshendbiservation equation are linear with
additive Gaussian noise. Taking the observation-erroianae to be unity, there are two parameters:
a, which sets the change of variance of each elemenrtwfder the deterministic dynamics, agdhe
standard deviation of the system noise.

The results of section 2c can now be applied. If we make thbdurassumption that,_1 ~ N(0,1),
then for the standard proposal the distributions needesifimplingxx and for updating the weights are,
respectively,

X[ Xk—1 ~ N(axi_1,%1),  Yi/xk ~ N(x, 1), (18)

while those needed for the optimal proposal follow (14) at®) @nd are given by

X1+ 0k a4+
1_|_q2 ’1_|_a2+q2

Xk[Xk—1,Yk ~ N ( |> . YkIXe1 ~ N (ax 1, (T+0)1). (19
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Figure 2: Histograms of the maximum weight frdi®? simulations of the system (17), using either
the standard proposals (left column) or the optimal propd@sght column). The weights come from
a single update step for observatiops with x}(fl drawn from NO,1). In the case of the optimal
proposal with N = 10and the standard proposal withtN= 160, the first and last bin, respectively,
have greater than 400 occurrences.

The optimal proposal distribution involves a Kalman-filtgrdate of the forecast fromy_1 given obser-
vationsyy.

The new weights satisfy

: 1 .
w0 exp(—5|yk—x'k|2) | (20)
for the standard proposal and
i vk —axj_4/°

The arguments of the exponentials in (20) and (21) have ¢xpa@lues that grow linearly withl,.
Thus, whenNy is large, a unit change in the arguments will produce inénghs dramatic changes in
Wi, leading to a situation in which one or a few realizationsdip{or x,_, in the case of the optimal
proposal) produce weights that are much larger than alrsttkr specified\y, however, the argument
of the exponential in (21) will be less than that in (20) witbthprobability: the denominator is always
larger andaxikfl will usually be closer toyk thanx‘k is, sincex}( is affected by the system noise. This
suggests, correctly, that the optimal proposal will redihesproblem of degeneracy.

These points are illustrated in Fig. 2, which shows histograf the maximum weight from simulations
of a single update step with each of the proposals. The ersesite is fixed,N. = 10%, and the
dimension of the state and observation vectors vaNgs; 10, 40, 160. Ad\, increases, maximum
weights close to unity become more frequent with either psap — this is the degeneracy problem
or, in the terminology of Snyder et al. (2008), the collaps¢he weights. At eachNy, however, the
degeneracy is less pronounced when using the optimal pebpos
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4 Behavior of the weights

As shown by the preceding example, a key question for parfitters is how the required ensemble
size increases as the dimension of the state increasestsBengpt al. (2008), Bickel et al. (2008) and
Snyder et al. (2008) analyze the collapse of the weightstailder the standard proposal. This section
reviews their asymptotic arguments and results, and @stllrow those results extend to the optimal
proposal (11) and weights updated by (12).

Consider the update (8) for the weightg,gtnd suppose that the weightgiat; are uniform. The latter
condition means that we examine only the degeneracy that@am over a single update. Let

V (Xk, Xk—1, Yk) = —10g(Wi/Wi—1) = 109 (P(Yk|Xk) P(Xk[Xk—1) / TT(Xk[Xk—1, Yk)) - (22)

The negative logarithm is included in the definition\¢ffor convenience in the manipulations that
follow. For the standard and optimal proposalss given by

V(X x )= —log p(yk|x«) for standard proposal distribution
ko X1, Yie) = —logp(yk|xk—1)  for optimal proposal distribution

We are interested M as a random variable wityy given,xy_1 distributed according tp(xx_1) andx
distributed agt(xk|Xk—1,Yk). Using an expectation over that distribution, we also define

2 =var(V).

Since the maximum weight corresponds to the minimin a given sample, the left-hand tail of the
distribution ofV in particular governs the degeneracy of the weights.

The example of section 3 provides a particularly tractaltleason. Ifyy ; andxy; are thejth compo-
nents ofyx andxy, respectively, then (18) and (19) imply

zlj\il(yk | —Xj)? for standard proposal distribution

2\/(Xk,Xk_1,yk) = { (24)

(1+0?) o Z’j\lil(ykJ —axc1j)?  for optimal proposal distribution

Under the assumptions of section 3, each term in the sums3)nig2ndependent and identically dis-
tributed (iid). The distribution o therefore approaches a Gaussian wNgnthe number of observa-
tions and the number of terms in the sum, is large.

If V has an approximately Gaussian distribution wihgnis large, asymptotic results for the sample
minimum of a Gaussian and for the tails of the Gaussian deasidl cumulative distribution function
can be brought to bear (Bengtsson et al. 2008; Snyder etl8)2section 4b). This yields the relation

E(]_/W(Ne)) ~ 1+7”2$9N97 (25)

which is valid when/logNg/T < 1 and where the superscrifitle) indicates the maximum of a sample
of sizeNe. Thus, the maximum weight\e) approaches 1 ag2logNe/T — 0 and, if one considers
a system with larger, Ne must increase as exp?/2) in order to keepE (1/wNe)) constant. The
exponential dependence Nf on T occurs for either proposal distribution, though for a giwystem
and observational network,will differ between the two proposals.

The asymptotic approach df to a Gaussian &y, — o can be shown under more general conditions
than requiring each degree of freedom to be iid and indepelydebserved (Bengtsson et al. 2008,
Bickel et al. 2008). For the standard proposal, Bengtssah €R008) show tha¥ is asymptotically
Gaussian whew j|xx andyx Xk are independent foy # | and the likelihoods(yi j|x«), considered
as functions ok with y fixed, have sufficiently similar distributions and are onlgakly dependent
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as | varies. Those arguments do not extend directly to optimap@sal, ag(yk|Xk—1) need not factor
into a product over likelihoods for individual components even when the observations errors are
independent. Stronger results hold for linear, Gaussiatesys (i.e. those of the form (13) but with
M(xx) = Mx linear; Bengtsson et al. 2008, Bickel et al. 2008, and sed&iof Snyder et al. 2008) and
for such systems the results can be extended to the optimabgal. The derivation begins by applying
a linear transformation to the observation variables st thaerms of the transformed variables, the
observation errors have identity covariance ®inchn be written as a sum over independent terms,

NN ,
V=SV == -~ Gx
J; j 2;(3/;(,, GXi-1)?,

where the prime denotes a transformed observation variitiev (HQHT + R)~Y/?HMx_1) has the
eigenvalue-eigenvector representatE", with A = diag(A1, Az, .., Ay, ), the required transforma-
tion is

y =E"(HQHT +R) %,
which impliesG = ET(HQHT + R)"Y2HM. Following Bickel et al. (2008), the distribution &f
approaches a GaussianNys— o if and only if

Ny
Z)\jz_’m- (27)
=1

Following this somewhat technical exposition, it is wordfitalling the main question, which is how the
ensemble size required by the patrticle filter increasesedithension of the state increases. Unfortu-
nately, (25) relates (an expectation of) the maximum weighi and 72, but not to the state dimension
Ny. Returning again to the simple example, where each degréeadom is iid and independently
observed,r2 O N, = Ny. In general, the relation af?> andN is less straightforward, because compo-
nents ofxx may be dependent. When components are more dependentdeadg for collapse of the
weights is reduced, both because the most likely valdisfsmaller and, more important, the left-hand
tail of the distribution ofV is compressed,; in effect, the distribution\¢fbehaves as though, were
smaller.

Finally, we consider the quantitative dependence,and thus the degeneracy of the weights, on the
choice of proposal, again using the system of section 3 axamme. Using (24) and the relation
between variance and kurtosis for a Gaussian distribution,

Ny(@®+?) (382 + 3%+ 1) for standard proposal distribution

Ny(o?+1)~2a? (32> +¢?+1)  for optimal proposal distribution (28)

Consistent with the qualitative argument in sectiom?3s always greater for the standard proposal than
for the optimal proposal. The two proposals give the saf the limit that system dynamics has
no noiseg® = 0. Asq increases (oa decreases, also increasing the relative importance ofystera
noise), the differences in” between the two proposals increases. &erq= 1/2, which makes the
prior variance ok equal to the observation-error variancéfrom the standard proposal is 5 times that
from the optimal proposal.

Since the ensemble size necessary to avoid degeneracy gkpasentially witht?, the optimal pro-
posal can be effective with dramatically smaller ensemlvieany given problem. Figure 3 compares
results from the two proposals and shows the mininNgfor which E(1/w(™)) < 1/0.9 as a function

of Ny, usinga = q= 1/2. For both proposals, the necesshigincreases exponentially witt?, and thus
the state dimensioNy, as predicted by (25). At a givedy, however, the optimal proposal needs orders
of magnitude fewer ensemble members. The ratio of the sloptee best-fit lines for logNe) versus

Ny is 4.6, in reasonable agreement with the ratio of 5 predioie(®28).
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Figure 3: The minimum Nsuch that E1/wNe)) < 1/0.9 for various values of Nin the system
(17). Results are shown for the standard proposal distiin(tircles) and the optimal proposal
(crosses), together with best-fit lines for each proposat ¢mit the data for the four smallest values
of Nv. The expectation df/wNe) is computed ovet(® realizations.

5 Summary and conclusions

While particle filters have been successful on low-dimemsicystems in a variety of fields, there is
little if any experience with the very high-dimensional &yss that are central to most geophysical
applications. Even in low-dimensional systems, partidterf have a tendency for the weights assigned
to each member to become extremely uneven, so that the elesbetomes degenerate in the sense that
one or a few members receive almost all the weight. Snyddr €2@08; also Bengtsson et al. 2008,
Bickel et al. 2008) demonstrate, under reasonably genssalnaptions, that avoiding such degeneracy
requires the ensemble size to grow exponentially with threamae of the total log likelihood of the
observations given the state.

Sequential importance sampling underlies the particlerfitut was not considered in Snyder et al.
(2008). In SIS, one chooses a distribution, called the papdistribution, from which the particles
are drawn and then computes appropriate weights for eaticlparso that the weighted sample ap-
proximates the correct posterior distribution. This papes reviewed sequential importance sampling,
with an emphasis on the so-called optimal proposal digtobup(xk|xk_1,Yk), which utilizes the latest
observations when drawing the new ensemble members, angacison against the standard proposal,
which simply evolves the members to the next observatioe tising the system dynamics.

A simple example in which the necessary distributions miysahandled analytically shows that degen-
eracy, while still present for sufficiently high-dimensabsystems, is reduced with the optimal proposal
relative to the standard proposal. The previous asympaogjoments can also be extended to the opti-
mal proposal. They demonstrate that it does not avoid therexgial increase of the required ensemble
size as the system dimension grows. They also provide aitptavet measure of how much the op-

timal proposal improves over the standard proposal. Innesseuse of the optimal proposal reduces
the factor in the exponent in the relation between the enkesibe and the state dimension and so can
dramatically reduce the required ensemble size. It seegas that the optimal proposal will facilitate

the use of particle filters for systems of moderate dimen&dew tens or hundreds), even if it does not
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immediately provide a path to a truly high-dimensional jcéetfilter.
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