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1 Introduction

Particle filters are an appealing class of data-assimilation techniques because of their simplicity and
their generality for nonlinear and non-Gaussian problems.They have seen wide use in fields outside
atmospheric science and oceanography (see Doucet et al. 2001). There have also been initial efforts
for applications in oceanography (van Leeuwen 2003) and land-surface modeling (Zhou et al. 2006).
Further introduction to and background on particle filters can be found in Gordon et al. (1993), Doucet
et al. (2001), Arulampalam et al. (2002), van Leeuwen (2009)and Boucquet et al (2010).

Particle filters are a sequential Monte-Carlo technique andcan be shown to produce an ensemble of
states drawn from the correct posterior distribution as theensemble sizeNe → ∞. (See Doucet 1998 for
a rigorous demonstration.) If there were sufficient computing to run ensemble forecasts with arbitrarily
large Ne, then implementation of particle filters would be straightforward and the results general. In
practice, the ensemble size is limited, and we expect that more members will be necessary as the system
dimension increases. All applications of the particle filter so far, however, involve systems whose state
space is either explicitly or effectively low dimensional.Thus, the effectiveness of particle filters for
high-dimensional systems remains an open question.

For the simplest “bootstrap” particle filter, in which each member (or particle) is evolved under the
system dynamics and assigned a weight proportional to the likelihood of the new observations given that
member. WhenNe is too small, one of the weights will approach unity and therewill be a corresponding
deterioration of the performance of the filter. Snyder et al.(2008; also Bengtsson et al. 2008, Bickel et
al. 2008) demonstrate, under reasonably general assumptions, that avoiding such degeneracy requires
Ne to grow exponentially withτ2, the variance of the total log likelihood of the observations given the
state. Thoughτ2 need not be directly related to the system dimension, it can be expected to grow with
the system dimension in the most interesting case, namely when the number of degrees of freedom with
significant variance also grows with the system dimension.

Sequential importance sampling is often employed in particle filters (Doucet et al. 2000) but was not
included in the analysis of Snyder et al. (2008). Rather thanusing evolution under the system dynamics
to generate ensemble members at later times, as in the bootstrap filter, one has the freedom to chose
the distribution from which later members are drawn, as longas this is accompanied by an appropriate
modification of the weights assigned to each member. The distribution from which new members are
drawn is known as the proposal distribution.

The present paper reviews sequential importance sampling and the so-called “optimal” proposal, which
incorporates the new observations at timetk when generating the ensemble members valid attk. (It is
worth emphasizing from the outset the potential for confusion in the terminology ”optimal proposal.”
The optimal proposal is is optimal only in a very restricted sense.) In the geophysical literature, several
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variants of particle filters have been proposed that capitalize on the idea of using the new observations
when generating members (van Leeuwen 2010, Papadakis et al.2010, Morzfeld et al. 2011). The result-
ing algorithms either approximate the optimal proposal distribution (Papadakis et al. 2010), reduce to it
in specific cases (Morzfeld et al. 2011) or are closely related (van Leeuwen 2010). I present a simple
example showing that the optimal proposal can greatly outperform simply evolving the existing ensem-
ble members totk under the system dynamics (which I will term the standard proposal). The arguments
of Snyder et al. (2008) can be applied to the optimal proposaland can quantify these benefits. Never-
theless, the same arguments also demonstrate that the required ensemble size again grows exponentially
for the optimal proposal, in this case as exponentially inω2, the variance of the log likelihood of the
observations given the state at theprevioustime.

Particle-filter algorithms typically also include a resampling step, after the update of each member’s
weight. Given the latest members and updated weights, a new ensemble is drawn from the distribution
implied by the members and their weights (or a smooth estimate of it). The result is a new ensemble
with uniform weights and members replicating or clustered around locations where the updated weights
were formerly large. Since they are based on the empirical distribution implied by the updated weights,
resampling schemes cannot repair deficiencies in the those weights and will not be discussed further
until the concluding section.

2 Background on particle filters and sequential importance sampling

2.1 Basics of particle filters

Let xk = x(tk) of dimensionNx be the state of the system at timetk. Suppose thatx evolves according to

xk = f(xk−1,ηk−1), (1)

and that the observationyk = y(tk) of dimensionNy is related to the state by

yk = h(xk)+ εk, (2)

whereηk andεk are each i.i.d. random variables for allk and, for simplicity, are mutually independent. It
will be convenient to denote with the subscriptj:k the vector obtained by concatenating the observation
vectors at timest j , . . . , tk; for example,y j:k is the concatenation of observation vectors at timest j , . . . , tk.

Formally, our goal is to calculate the filtering density (that is, the conditional probability density ofxk

given observationsy0, . . . ,yk up to timetk) via Bayes rule,

p(xk|y0:k) =
p(yk|xk)p(xk|y0:k−1)

p(yk|y0:k−1)
(3)

Since all pdfs in what follows will be conditioned ony0:k−1, we will omit those observations in the
sequel when writing the condition statements.

Direct computation with the pdfs in (3) is not feasible unlessNx andNy are small or the problem has other
simplifying structure. Particle filters are Monte-Carlo methods that instead work with finite, weighted
ensembles{xi

k,w
i
k; i = 1, . . . ,Ne} that approximate the desiredp(xk|yk) in the sense that a weighted sum

over the ensemble members converges to an expectation with respect top(xk|yk):

Ne

∑
i=1

wi
kg(xi

k) →
∫

g(xk)p(xk|yk)dxk asNe → ∞. (4)
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2.2 Sequential importance sampling

Particle-filter algorithms may be cast in terms of sequential importance sampling. To understand impor-
tance sampling, suppose we are given two distributionsp(x) andπ(x), together with a random sample
{xi , i = 1, . . . ,Ne} from π(x). Defining weightswi = p(xi)/π(xi), the weighted sample{xi ,wi} then
approximatesp(x) in the sense of (4). This is useful ifp(x) is difficult to sample from whileπ(x) is
easy. The distributionsp(x) andπ(x) are known as thetargetand theproposalrespectively. See Doucet
(1998) and Arulampalam et al. (2002) for further introduction sequential importance sampling.

Sequential importance sampling proceeds sequentially in time, computing at each time a weighted sam-
ple {xi

k,w
i
k} that approximatesp(xk|yk). It is sufficient to consider the step fromtk−1 to tk, in which we

start from{xi
k−1,w

i
k−1} and compute{xi

k,w
i
k}. The idea is to apply importance sampling to the joint

conditional distributionp(xk−1,xk|yk).

We choose a proposal density of the form

π(xk−1,xk|yk) = π(xk−1)π(xk|xk−1,yk), (5)

whereπ(xk−1) is the proposal density fromtk−1 andπ(xk|xk−1,yk) remains to be specified. Sampling
from π(xk−1,xk|yk), when it has the form (5), can be achieved simply by drawingxi

k from π(xk|xi
k−1,yk);

the pair(xi
k−1,x

i
k) is a therefore random draw fromπ(xk−1,xk|yk) since we have assumedxi

k−1 was
drawn fromπ(xk−1).

The corresponding importance weight is given by

wi
k ∝

p(xi
k−1,x

i
k|yk)

π(xi
k−1,x

i
k|yk)

=
p(xi

k−1,x
i
k|yk)

π(xi
k−1)π(xi

k|xi
k−1,yk)

. (6)

The constant of proportionality is determined by requiringthat∑wi
k = 1. Applying Bayes rule and the

definition of a condtional density, the joint conditional density may be written as

p(xk−1,xk|yk) = p(yk|xk)p(xk−1,xk) = p(yk|xk)p(xk|xk−1)p(xk−1). (7)

Substituting (7) in (6) yields

wi
k ∝

p(yk|xi
k)p(xi

k|xi
k−1)

π(xi
k|xi

k−1,yk)
wi

k−1, (8)

sincewi
k−1 = p(xi

k−1)/π(xi
k−1).

Sequential importance sampling attk thus proceeds in two steps: First, drawing a random sample{xi
k−1}

from the chosen proposal distribution and, second, updating the weightwi
k−1 associated with each mem-

ber, orparticle, via (8). The update of the weights is sequential in the sensethat it uses onlyyk, xi
k−1 and

wi
k−1, and no information from times earlier thantk−1. This simplification follows from the assumptions

that the dynamics (1) is Markovian (that is,xk depends only onxk−1) and the observation equation (2)
at tk depends only onxk.

The performance of importance sampling depends strongly onthe choice of the proposal distribution.
Frequently, the transition distribution for the dynamics is used,

π(xk|xk−1,yk) = p(xk|xk−1). (9)

The particlesxi
k are a random draw from the prior distributionp(xk) and can be generated simply by

evolvingxi
k−1 forward under the system dynamics. The weights are then updated by multiplying by the

observation likelihood for each member,

wi
k = p(yk|xi

k)w
i
k−1. (10)
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Figure 1: A two-dimensional example of importance samplingusing the proposal (10). (a) The prior
pdf (the proposal; contours) and a sample from that pdf (dots). (b) The posterior pdf (contours) given
an observation y= x1 + ε = 1.1, whereε ∼ N(0,1), and the weighted particles, shown as circles
with radius proportional to p(y|x).

This is the case considered by Snyder et al. (2008). I will term (9) thestandardproposal.

Figure 1 illustrates how importance sampling works in a two-dimensional example and using the stan-
dard proposal. The prior pdf (the proposal) and a sample of size 100 from that proposal are shown in
Fig. 1a. (In a slight abuse of previous notation,x1 andx2 are the two components of the state vector
x.) We are given a observationy = x1 + ε = 1.1 of the first component contaminated by Gaussian noise
of zero mean and standard deviation 1. The posterior pdf is shown in Fig. 1b, together with circles
at the locations of the particles and having radius proportional to p(y|x). Although the ensemble was
drawn from the proposal distribution, it represents the posterior well after weighting byp(y|x), since the
posterior is proportional to the product of the proposal (9)andp(y|x).

Another possible choice for the proposal distribution is

π(xk|xk−1,yk) = p(xk|xk−1,yk), (11)

with weights updated according to
wi

k = p(yk|xi
k−1)w

i
k−1. (12)

Equation (12) is derived by using Bayes rule and the fact thatyk|xk is independent ofxk−1 to write

p(xk|xk−1,yk) = p(yk|xk)p(xk|xk−1)/p(yk|xk−1),

and substituting this result into (8). Unlike the standard proposal (9), this proposal depends on the new
observationsyk; generating samples from (11) is therefore more closely related to data assimilation than
to ensemble forecasting, which (9) mimics. In addition, theweights at timetk are independent of the
sample{xi

k} drawn from the proposal; instead, they depend on the particle xi
k−1 from the previous time.

In the particle-filtering literature, (11) has come to be known as the “optimal” proposal. This terminol-
ogy can be confusing, as the optimality doesnot refer to the performance of the resulting particle filter.
Instead, (11) is optimal in the sense that it achieves the minimum variance ofwi

k over different random
draws ofxi

k, since by (12)wi
k is independent ofxi

k and so that variance is zero.

2.3 Sampling from the optimal proposal

In contrast to the standard proposal, sampling fromp(xk|xk−1,yk) is nontrivial in general, because of the
conditioning onyk. Morzfeld et al. (2011) present an approach that relies on having an efficient means
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to find the mode ofp(xk|xk−1,yk). For the purposes of this paper, it suffices to examine a reasonably
general setting in which analytic expressions forp(xk|xk−1,yk) are available.

Analytic progress is possible when the system and observation noise are additive and Gaussian, and the
observation operator is linear. Let the system be

xk = M(xk−1)+ηk, yk = Hxk + εk, (13)

with ηk ∼ N(0,Q) andεk ∼ N(0,R).

In that case, as discussed in Doucet et al. (2000),

xk|xk−1,yk ∼ N(x̄k,P), (14)

where
x̄k = (I −KH )xk−1 +Kyk, P = (I −KH )Q (15)

with K = QHT(HQHT + R)−1. To see this, note that the system dynamics imply thatxk|xk−1 ∼
N(M(xk−1),Q); conditioning onyk can then be achieved by applying Bayes rule using the standard
Kalman-filter update for a prior with covarianceQ. Thus, the optimal proposal becomes a Gaussian
with mean and covariance given by (15).

The weights also have an analytic expression, since (13) immediately implies that

yk|xk−1 ∼ N
(

HM(xk−1),HQHT +R
)

. (16)

The updated weightswi
k, given by (12), are thus obtained by evaluating atyk the pdf for a Gaussian of

meanHM(xi
k−1) and covarianceHQHT +R.

3 Behavior of the weights in a simple example

A common issue in particle filtering is the tendency for one ora few of the weights to be much larger
than the rest. This phenomenon is known asdegeneracy. It can occur spuriously, owing to sampling
variability in the algorithm, and in that case the weighted sample will be a poor approximation to the
posterior pdf. Much of the subtlety of particle-filter algorithms, including the choice of proposal, centers
on avoiding this degeneracy. This section illustrates the problem for both the standard proposal and the
optimal proposal.

Consider the simple system in which

xk = axk−1 + ηk−1, yk = xk + εk, (17)

with a > 0 a scalar,ηk−1 ∼ N(0,q2I) andεk ∼ N(0, I). Each element of the state vector evolves and
is observed independently and both the system dynamics and the observation equation are linear with
additive Gaussian noise. Taking the observation-error variance to be unity, there are two parameters:
a, which sets the change of variance of each element ofx under the deterministic dynamics, andq, the
standard deviation of the system noise.

The results of section 2c can now be applied. If we make the further assumption thatxk−1 ∼ N(0, I),
then for the standard proposal the distributions needed forsamplingxk and for updating the weights are,
respectively,

xk|xk−1 ∼ N(axk−1,q
2I), yk|xk ∼ N(xk, I), (18)

while those needed for the optimal proposal follow (14) and (16) and are given by

xk|xk−1,yk ∼ N

(

axk−1 +q2yk

1+q2 ,
a2 +q2

1+a2 +q2 I
)

, yk|xk−1 ∼ N
(

axk−1,
(

1+q2) I
)

. (19)
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Figure 2: Histograms of the maximum weight from103 simulations of the system (17), using either
the standard proposals (left column) or the optimal proposal (right column). The weights come from
a single update step for observationsyk, with xi

k−1 drawn from N(0, I). In the case of the optimal
proposal with Nx = 10and the standard proposal witht Nx = 160, the first and last bin, respectively,
have greater than 400 occurrences.

The optimal proposal distribution involves a Kalman-filterupdate of the forecast fromxk−1 given obser-
vationsyk.

The new weights satisfy

wi
k ∝ exp

(

−1
2
|yk−xi

k|2
)

, (20)

for the standard proposal and

wi
k ∝ exp

(

−
|yk−axi

k−1|2
2(1+q2)

)

. (21)

The arguments of the exponentials in (20) and (21) have expected values that grow linearly withNy.
Thus, whenNy is large, a unit change in the arguments will produce increasingly dramatic changes in
wi

k, leading to a situation in which one or a few realizations ofxi
k (or xi

k−1 in the case of the optimal
proposal) produce weights that are much larger than all others. For specifiedNy, however, the argument
of the exponential in (21) will be less than that in (20) with high probability: the denominator is always
larger andaxi

k−1 will usually be closer toyk thanxi
k is, sincexi

k is affected by the system noise. This
suggests, correctly, that the optimal proposal will reducethe problem of degeneracy.

These points are illustrated in Fig. 2, which shows histograms of the maximum weight from simulations
of a single update step with each of the proposals. The ensemble size is fixed,Ne = 103, and the
dimension of the state and observation vectors varies,Nx = 10, 40, 160. AsNx increases, maximum
weights close to unity become more frequent with either proposal – this is the degeneracy problem
or, in the terminology of Snyder et al. (2008), the collapse of the weights. At eachNx, however, the
degeneracy is less pronounced when using the optimal proposal.
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4 Behavior of the weights

As shown by the preceding example, a key question for particle filters is how the required ensemble
size increases as the dimension of the state increases. Bengtsson et al. (2008), Bickel et al. (2008) and
Snyder et al. (2008) analyze the collapse of the weights in detail for the standard proposal. This section
reviews their asymptotic arguments and results, and outlines how those results extend to the optimal
proposal (11) and weights updated by (12).

Consider the update (8) for the weights attk and suppose that the weights attk−1 are uniform. The latter
condition means that we examine only the degeneracy that canoccur over a single update. Let

V(xk,xk−1,yk) ≡− log(wk/wk−1) = log(p(yk|xk)p(xk|xk−1)/π(xk|xk−1,yk)) . (22)

The negative logarithm is included in the definition ofV for convenience in the manipulations that
follow. For the standard and optimal proposals,V is given by

V(xk,xk−1,yk) =

{

− logp(yk|xk) for standard proposal distribution
− logp(yk|xk−1) for optimal proposal distribution

We are interested inV as a random variable withyk given,xk−1 distributed according top(xk−1) andxk

distributed asπ(xk|xk−1,yk). Using an expectation over that distribution, we also define

τ2 = var(V).

Since the maximum weight corresponds to the minimumV in a given sample, the left-hand tail of the
distribution ofV in particular governs the degeneracy of the weights.

The example of section 3 provides a particularly tractable situation. If yk, j andxk, j are thejth compo-
nents ofyk andxk, respectively, then (18) and (19) imply

2V(xk,xk−1,yk) =







∑Ny

j=1(yk, j −xk, j)
2 for standard proposal distribution

(

1+q2
)−1∑Ny

j=1(yk, j −axk−1, j )
2 for optimal proposal distribution

(24)

Under the assumptions of section 3, each term in the sums in (23) is independent and identically dis-
tributed (iid). The distribution ofV therefore approaches a Gaussian whenNy, the number of observa-
tions and the number of terms in the sum, is large.

If V has an approximately Gaussian distribution whenNy is large, asymptotic results for the sample
minimum of a Gaussian and for the tails of the Gaussian density and cumulative distribution function
can be brought to bear (Bengtsson et al. 2008; Snyder et al. (2008), section 4b). This yields the relation

E(1/w(Ne)) ∼ 1+

√
2logNe

τ
, (25)

which is valid when
√

logNe/τ ≪ 1 and where the superscript(Ne) indicates the maximum of a sample
of sizeNe. Thus, the maximum weightw(Ne) approaches 1 as

√
2logNe/τ → 0 and, if one considers

a system with largerτ , Ne must increase as exp
(

τ2/2
)

in order to keepE(1/w(Ne)) constant. The
exponential dependence ofNe on τ occurs for either proposal distribution, though for a givensystem
and observational network,τ will differ between the two proposals.

The asymptotic approach ofV to a Gaussian asNy → ∞ can be shown under more general conditions
than requiring each degree of freedom to be iid and independently observed (Bengtsson et al. 2008,
Bickel et al. 2008). For the standard proposal, Bengtsson etal. (2008) show thatV is asymptotically
Gaussian whenyk, j |xk andyk,l |xk are independent forj 6= l and the likelihoodsp(yk, j |xk), considered
as functions ofxk with yk fixed, have sufficiently similar distributions and are only weakly dependent
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as j varies. Those arguments do not extend directly to optimal proposal, asp(yk|xk−1) need not factor
into a product over likelihoods for individual componentsyk, j even when the observations errors are
independent. Stronger results hold for linear, Gaussian systems (i.e. those of the form (13) but with
M(xk) = Mxk linear; Bengtsson et al. 2008, Bickel et al. 2008, and section 5 of Snyder et al. 2008) and
for such systems the results can be extended to the optimal proposal. The derivation begins by applying
a linear transformation to the observation variables so that, in terms of the transformed variables, the
observation errors have identity covariance andV can be written as a sum over independent terms,

V =
Ny

∑
j=1

Vj =
1
2

Ny

∑
j=1

(y′k, j −Gxk−1)
2,

where the prime denotes a transformed observation variable. If cov
(

(HQHT +R)−1/2HMx k−1
)

has the
eigenvalue-eigenvector representationEΛET , with Λ = diag(λ1,λ2, . . . ,λNy), the required transforma-
tion is

y′ = ET(HQHT +R)−1/2y,

which impliesG = ET(HQHT + R)−1/2HM . Following Bickel et al. (2008), the distribution ofV
approaches a Gaussian asNy → ∞ if and only if

Ny

∑
j=1

λ 2
j → ∞. (27)

Following this somewhat technical exposition, it is worth recalling the main question, which is how the
ensemble size required by the particle filter increases as the dimension of the state increases. Unfortu-
nately, (25) relates (an expectation of) the maximum weightto Ne andτ2, but not to the state dimension
Nx. Returning again to the simple example, where each degree offreedom is iid and independently
observed,τ2 ∝ Ny = Nx. In general, the relation ofτ2 andNx is less straightforward, because compo-
nents ofxk may be dependent. When components are more dependent, the tendency for collapse of the
weights is reduced, both because the most likely value ofV is smaller and, more important, the left-hand
tail of the distribution ofV is compressed; in effect, the distribution ofV behaves as thoughNy were
smaller.

Finally, we consider the quantitative dependence ofτ , and thus the degeneracy of the weights, on the
choice of proposal, again using the system of section 3 as an example. Using (24) and the relation
between variance and kurtosis for a Gaussian distribution,

τ2 =







Ny(a2 +q2)
(

3
2a2 + 3

2q2 +1
)

for standard proposal distribution

Ny(q2 +1)−2a2
(

3
2a2 +q2 +1

)

for optimal proposal distribution
(28)

Consistent with the qualitative argument in section 3,τ2 is always greater for the standard proposal than
for the optimal proposal. The two proposals give the sameτ2 in the limit that system dynamics has
no noise,q2 = 0. As q increases (ora decreases, also increasing the relative importance of the system
noise), the differences inτ2 between the two proposals increases. Fora = q = 1/2, which makes the
prior variance ofxk equal to the observation-error variance,τ2 from the standard proposal is 5 times that
from the optimal proposal.

Since the ensemble size necessary to avoid degeneracy growsexponentially withτ2, the optimal pro-
posal can be effective with dramatically smaller ensemblesin any given problem. Figure 3 compares
results from the two proposals and shows the minimumNe for which E(1/w(Ne)) < 1/0.9 as a function
of Nx, usinga= q= 1/2. For both proposals, the necessaryNe increases exponentially withτ2, and thus
the state dimensionNx, as predicted by (25). At a givenNx, however, the optimal proposal needs orders
of magnitude fewer ensemble members. The ratio of the slopesof the best-fit lines for log(Ne) versus
Nx is 4.6, in reasonable agreement with the ratio of 5 predictedby (28).
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Figure 3: The minimum Ne such that E(1/w(Ne)) < 1/0.9 for various values of Nx in the system
(17). Results are shown for the standard proposal distribution(circles) and the optimal proposal
(crosses), together with best-fit lines for each proposal that omit the data for the four smallest values
of Nx. The expectation of1/w(Ne) is computed over103 realizations.

5 Summary and conclusions

While particle filters have been successful on low-dimensional systems in a variety of fields, there is
little if any experience with the very high-dimensional systems that are central to most geophysical
applications. Even in low-dimensional systems, particle filters have a tendency for the weights assigned
to each member to become extremely uneven, so that the ensemble becomes degenerate in the sense that
one or a few members receive almost all the weight. Snyder et al. (2008; also Bengtsson et al. 2008,
Bickel et al. 2008) demonstrate, under reasonably general assumptions, that avoiding such degeneracy
requires the ensemble size to grow exponentially with the variance of the total log likelihood of the
observations given the state.

Sequential importance sampling underlies the particle filter but was not considered in Snyder et al.
(2008). In SIS, one chooses a distribution, called the proposal distribution, from which the particles
are drawn and then computes appropriate weights for each particles so that the weighted sample ap-
proximates the correct posterior distribution. This paperhas reviewed sequential importance sampling,
with an emphasis on the so-called optimal proposal distribution, p(xk|xk−1,yk), which utilizes the latest
observations when drawing the new ensemble members, and comparison against the standard proposal,
which simply evolves the members to the next observation time using the system dynamics.

A simple example in which the necessary distributions may all be handled analytically shows that degen-
eracy, while still present for sufficiently high-dimensional systems, is reduced with the optimal proposal
relative to the standard proposal. The previous asymptoticarguments can also be extended to the opti-
mal proposal. They demonstrate that it does not avoid the exponential increase of the required ensemble
size as the system dimension grows. They also provide a quantitative measure of how much the op-
timal proposal improves over the standard proposal. In essence, use of the optimal proposal reduces
the factor in the exponent in the relation between the ensemble size and the state dimension and so can
dramatically reduce the required ensemble size. It seems clear that the optimal proposal will facilitate
the use of particle filters for systems of moderate dimension(a few tens or hundreds), even if it does not
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immediately provide a path to a truly high-dimensional particle filter.
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