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Abstract 

The framework of Residual Distribution schemes (RD) was applied to the geographical advection part of the 
Wave Action Equation (WAE). The schemes proved robustness, accuracy and efficiency in many different 
applications, ranging from Open Ocean, Coastal Seas and Laboratory Experiments. The schemes are of 1st up to 
2nd order in space and time.  Here the theoretical framework for these schemes is given and numerical 
experiments have been carried out for certain cases where an analytical solution can be easily constructed.  

 

1. Introduction 
Unstructured mesh methods have gained in the spectral wave modelling community strong influence 
since the early works of Benoit et al. (1996), Ardhuin (2001) and Liau (2001). Following this a 
variety of unstructured mesh methods have been introduced, mostly for the Eulerian form of the 
WAE. The method’s used are mostly from the class of FE (Finite Elements) or FV (Finite Volume). 
As alternative to actually available numerical schemes for the solution of the geographical part in the 
WAE on unstructured meshes, Residual Distribution Schemes (RD; also known as “Fluctuation 
Splitting Schemes”) have been considered here.  

The RD-schemes are a quite new and lovely family of numerical schemes which borrow ideas from 
the FE and FV framework. As a result, compact schemes and accurate solutions can be achieved on 
the framework of the philosophy of fluctuation splitting. Abgrall (2006) gives a recent review on the 
history and future trends of fluctuation splitting schemes. The Residual Distribution technique was 
first introduced by Roe (1982) and further improved by many other scientists (e.g. Abgrall, 
Deconinck, Roe, Hubbard and others).  

2. Residual Distribution (RD) Schemes 
 

As a starting point, the RD-philosophy will be briefly introduced starting from the linear advection 
equation. The linear advection equations for the WAE or for any scalar quantity in a divergence free 
flow reads: 

 0N N
t

∂
+ ∇ =

∂ X Xc  (1)  
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This form of the advection equation is valid for deep water waves that are not interacting with the 
bottom or the ambient currents. The derivation of the RD-schemes for the flux form of the WAE (eq. 
2) is shown hereinafter.  

 ( ) 0N N
t

∂
+∇ =

∂ X Xc   (2) 

Eq.1 can be integrated by isolating the time derivative and integrating over the whole domain Ω. 

 gc ,N dA NdA
t ΩΩ

∂
= ∇

∂
⌠
⌡ ∫  (3) 

where the domain Ω is divided into a triangular mesh with a conformal triangulation (see Figure 1 and 
2). A cell is defined with its vertices i that are numbered counter clock wise and have unique 
coordinates (xi,yi). The discrete solutions are stored at the vertices of the triangulation. Eq. 3 can be 
rewritten as the sum of the integrals over each triangular cell N.  

 
1

N

i T

N NdA dA
t t=Ω

∂ ∂
=

∂ ∂∑∫ ∫  (4) 

The integral on the right hand side of eq. 4 can be reformulated with the aid of eq. 3 as 

 T
T T

N dA NdA
t

∂
= − ∇ = Φ

∂∫ ∫ Xc   (5) 

Here “the integral of the time derivative over the cell is equal the fluctuation of that cell” (cf. 
Tomaich, 1995). The “total fluctuation” of a cell or “the residual of a cell” is named ΦT. For 
evaluation of these integrals over a triangular cell a distribution function within a cell for the unknown 
quantity must be assumed. In the fluctuation-splitting framework, usually a linear variation of the 
dependent variable within the triangular cell is assumed resulting in a linear basis function in every 
triangular element.  

The approximate solution of the unknowns can be expressed as 

 ( ) ( ) ( )

3

, , ,
1

,t x y x y t i
i

N w N
=

= ⋅∑   (6) 
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Figure 1: Example of a typical triangulated domain Ω (here the Mediterranean Sea).  

 

Figure 2: Typical element patch (think black line) and corresponding median dual cell (red thick 
line).  
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where wi are the linear basis functions (see Figure 3) defined at each vertex. The RD-schemes borrows 
at this stage the idea from the Finite Element Method, see e.g. Donea (1985), eq. 6 is similar to his eq. 
7. The total cell fluctuation (eq.5) can now be written in a discrete form introducing the spatial 
derivative of wave action, which is given for a linear basis function, wi within the element as:  

 
3

1

1
2 i

iT

N N
S =

∇ = − ∑ in   (7) 

 

Substituting eq.7 in the right hand side of eq.5 one can rewrite the total fluctuation as follows: 

 3 3 3

1 1 1

1 1     λ λ
2 2

T
T

i i i i
i i i

NdA

N N k N
= = =

Φ = − ∇

 = ⋅ ⋅ = ⋅ = 
 

∫

∑ ∑ ∑

X

i i

c

n n
  (8) 

ST is the area of the triangle and ni the edge normal vector defined according to Figure 3. The vectors 
ni are scaled with the edge length to opposite to its vertices. λ is the linearized advection vector of the 
cell. In this special case it was assumed that it is constant in spatial space (no currents, deep water) so 
it follows that: 

 ( )

3

1

1λ  for 
3 i=

= = ≠∑ X,i X,i X,i X,i Xc c c c   (9) 

 

 
Figure 3 Definition of the edge normal vectors (adapted from Tomaich, 1995). 
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Introducing the scalars ki 

 
1= λ
2ik in   (10) 

one can see that the sum of all vectors ni is zero so that following identity is valid: 

 
3

1
0

i=
=∑ in  . (11) 

From eq.11 immediately follows that  

 
3

1
0i

i
k

=

=∑   (12) 

These relationships are important for the further derivation of the RD-schemes. The total fluctuation 
of a triangular cell for the linear conservation law can now be rewritten using the above-defined 
relationships as follows: 

 
3 3 3

,
1 1 1

T i i i T i T
i i i

k N α
= = =

Φ = = Φ = Φ∑ ∑ ∑ ,  (13) 

αi are the redistribution coefficients, which must be in their sum unity in order to guarantee 
conservation, 

 
3

1
1i

i
α

=

=∑   (14) 

Si is the median dual cell area (see Figure 2), which can be evaluated as the sum of one third of the 
cell areas Ai connected to the certain vertex i. 

 

.

1

1
3

conN

i i
i

S A
=

= ⋅∑
  (15) 

The numerical approximation of eq.1 is then obtained through the following explicit “finite volume 
type” time integration procedure. 

 1
,

, i

n n
i i i T

T i Di

tN N
S

+

∈

∆
= + Φ∑   (16) 

In order to update the solution, the contribution of all fluctuations Φi,T, that are members of the set of 
triangles Di (element patch) connected to node I, are cumulated. The cumulated cell fluctuations are 
weighted by the area of the median dual cell, which results in an updating scheme, which is very 
similar to cell-vertex FV-schemes (e.g. Qian et al. 2007). However, one advantage of the above 
described updating procedure is that for FV-schemes the nodal update is calculated as the sum of the 
edge fluxes defining the median dual cell, which are twice more than cells needed for the update in 
the FS scheme. The sum of all nodal fluctuations, contributing to the nodal update, vanishes when 
eq.16 reaches its steady state solution: 
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 ,
,

0
i

i T
T i T∈

Φ =∑   (17) 

After the total fluctuation of a certain cell has been calculated, it must be distributed over the vertices 
of the cell. The main problem in designing the schemes lies in the definition of the redistribution 
coefficients αi, which characterizes the final advection scheme. Certain design principles are defined 
in order to develop proper redistribution schemes. These criteria are 

Conservation or property (C) requires that the solution at the new time level n+1 conserves the 
depended variable. This is guaranteed as long as the distribution coefficients αi in eq.14 are in their 
sum unity.  

Positivity of the scheme, or the so called property (P). For a linear scheme, the solution at the new 
time level can be written as sum of the product between the coefficients kc , resulting from the 

discretization of a certain scheme. The values of the updated solution are positive if the coefficients 

kc  are positive  

 1

1

N
n n
i k k

k
u c u+

=

= ⋅∑    (18) 

For explicit schemes this condition is normally strictly connected to a CFL stability criterion, which 
must be maintained in order to get stable and monotone solutions. For the explicit schemes, in the 
RD-framework this criterion is:  

 ,max
i

i
i T i D

i

kt
A

+

∈

 
∆ =  

 
  (19) 

Linear Preservation (LP); Condition LP prescribes that the numerical scheme maintains 2nd order 
accuracy at steady state in smooth regions of the solution while retaining monotonicity in the vicinity 
of shocks as long  the CFL-like condition is met. 

Based on the “Godunov's order barrier theorem” linear schemes1 cannot be both (P) and (LP) at the 
same time according to, which states that linear monotone schemes cannot be of second order without 
producing oscillative solutions. It is possible to construct second order linear preserving schemes, but 
this makes a nonlinear redistribution of the fluctuations necessary. In the framework of explicit time 
integration schemes, this can be done with the application of so called “Flux limiters” or with the aid 
of blending of linear monotone and nonlinear non-monotone schemes (e.g. Roe, Leonard and many 
others). In the framework of Finite Volume schemes, this is called “Total Variation Diminishing” 
criterion. The second order fluxes of the non-monotone schemes are limited near strong gradients, 
where these schemes would otherwise produce non-positive values, and monotone first order schemes 
are used. The art of designing such limiters is to apply them only in situations where the second order 
schemes lead to non-monotone results maintaining second order accuracy as often as possible. In the 
RD-framework, similar technique can be applied as done in e.g. by Hubbard & Roe (2002). One 
advantage of explicit integration schemes is that they are faster than implicit schemes because no 
linear equation system has to be solved. Another advantage is that nonlinear schemes can be designed 

                                                      
1 Linear schemes, in the sense, that the solution at the new time level is a linear combination of the old values of 
the solution.  
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in order to fulfil all the above-mentioned design criteria. The results are non-oscillatory monotone 
higher order space/time schemes with a high accuracy.  

However, in certain applications, where a high spatial resolution is needed, the limiting factor for the 
explicit schemes becomes the stability criterion of eq. 19. The numerical scheme can become 
unfeasible with respect to the needed computational time.  

Implicit schemes have with respect to this a clear advantage, they can be designed in such a way that 
their stability and monotonicity does not depend on the CFL criterion. The price to pay is the solution 
of a linear equation system that evolved in the solution procedure. The computational time for the 
implicit scheme is roughly two times greater than for the implicit schemes for the case of the explicit 
and implicit N-scheme (see Roland, 2009). In order to obtain an unconditionally monotone implicit 
scheme that is also LP must lead, because of the Godunov theorem, to a nonlinear scheme (see e.g. 
Abgrall & Mezine, 2004 and Richuotto et al., 2005). The resulting equation system becomes in this 
case naturally also nonlinear and iterative methods have to be used for the solution. For the WAE this 
is a crux since the advection part must be solved for each spectral component that average around 800 
-1200 quantities with different advection velocities makes an application of a nonlinear equation 
solver to a computationally very expensive task. In this thesis, the author did not consider nonlinear 
implicit schemes because of the necessary iterative solution procedure and the associated 
computational costs. As long as the implicit schemes are linear and monotonicity should be retained 
the schemes cannot be second order in space and time and though LP. Higher order linear schemes 
will always be limited by a CFL as condition for which monotonicity is retained. However, the author 
focuses in this work on linear and non-linear explicit schemes as this was the demand of the centre. 

2.1. Explicit Residual Distribution schemes 

2.1.1. The CRD N-scheme 

The basis of all RD-schemes is the N-Scheme, which has its name because of its narrow numerical 
stencil as it uses only the nearest neighbour nodes to compute the nodal update of the solution. In 
order to describe the N-Scheme for the general nonlinear conservation law, first the scheme for a 
linear conservation law given by eq. 20 will be derived. The standard N-scheme can be designed 
introducing an upwinding for the distribution of the total fluctuation over the nodes of the elements. In 
order to do so, it must be distinguished between two and one-sided inflow triangles (e.g. Tomaich, 
1995). The amount of inflow sides and the upwind nodes are defined through the signs of the k-
values. For the simple case of one inflow side, the whole fluctuation ΦT is sent to the upwind node. 
For the more complicated case of two inflow sides, the total fluctuation is split between the nodes. 
The method of this splitting defines the final character of the scheme. The total fluctuation can be 
rewritten using eq.12, for the case of two inflow edges as shown in Figure 4, as 

 ( ) ( )2 2 1 3 3 1T k N N k N NΦ = ⋅ − + ⋅ − .  (20) 
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Figure 4: Two and one side inflow within a triangle; taken from Tomaich (1995) 

From eq. 20 the splitting is obvious and the redistribution of the fluctuations for the N-scheme reads 

 ( )
( )

1,

2, 2 2 1

3, 3 3 1

0T

T

T

k N N

k N N

Φ =

Φ = ⋅ −

Φ = ⋅ −

  (21) 

Following e.g. Abgrall (2006) the N-scheme can be written in a more compact form introducing  

positive and the negative k’s  

 
max( ,0)

min( ,0)
i i

i i

k k
k k

+

−

=

=
  (22) 

so that 

 i i ik k k+ −= +   (23) 

and the upwind residual becomes 

 
3

1
i i

i
N n k N−

=

 = ⋅ 
 
∑

   (24) 

with 

 
13

1
i

i
n k

−
−

=

 =  
 
∑   (25) 

The resulting splitting for the total fluctuation may now be written as 

 , ( )i T i ik N N+Φ = −    (26) 
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It can be easily seen that, when cumulating all nodal fluctuations according to eq. 27, the total 
fluctuation of the cell is obtained which renders the scheme a conservative one.  

 
3

,
1

T i T
i=

Φ = Φ∑   (27) 

The above set of equations defines the standard N-scheme for linear conservations laws according to 
eq. 1. The resulting scheme is valid only for the WAE in the case of the deep-water waves without 
ambient currents when the group velocities are divergence free in geographic space. The flux form, 
which is valid in the general case, is defined as  

 ( ) 0N N
t

∂
+∇ =

∂ X Xc   (28) 

and can be rewritten using the product rule giving  

 ( ) X X
N NN N N
t t

∂ ∂
+∇ = + ∇ + ∇

∂ ∂X X X Xc c c   (29) 

Since the last term of the right hand side of eq. 29 do not vanish2 in the general case, there is no 
obvious linearization for eq. 28 and therefore the conservative form must be solved given through eq. 
28. 

In order to construct a conservative scheme in terms of the RD-framework, Csik et al (2002) 
introduced the CRD-scheme (Conservative contour Integral based Residual Distribution scheme) 
where the total cell fluctuation is evaluated over the cell contour integrating an arbitrary flux function 
F with a higher order integration method for the evolving Gauss integral. 

 T
T

ndS
∂

Φ = − ∇ ⋅∫




   (30) 

For the WAE, the flux function is defined as 

 N= ⋅ Xc   (31) 

For the case of the conservative form of the WAE, which is valid for general nonlinear conservation 
laws, the nodal residual must be calculated according to Csik et al. (2002). The authors suggested 
replacing eq. (24) with the following formula in order to conserve an arbitrary flux function F. 

 
3

1
i i T

i
N n k N+

=

 = ⋅ −Φ 
 
∑

   (32) 

Eq. (32) can easily be derived when rewriting eq.8 for the case of the two inflow edges and 
calculating the contribution of the upwind node, but with the difference that the total fluctuation ΦT is 
an unknown quantity. This leads directly to eq. 33 which is equivalent to eq. 32. 

                                                      
2 The solution of the linearized equations in shallow water would result e.g. in an absence of the wave shoaling. 
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 ( )1 2 2 3 3
1

1
TN k N k N

k
= ⋅ + ⋅ −Φ   (33) 

If the upwind contribution is calculated this way it can be seen, when cumulating all contributions 
from the nodes of each element according to eq.30, that the total fluctuation is conserved when using 
eq.32. Since the upwind contribution is now evaluated of terms of the total fluctuation ΦT, integrating 
eq.30 numerically, the conservation of arbitrary flux functions F is enforced. The linearized state, 
defined through the average velocity in the element, is used only for the identification of the upwind 
direction. This procedure can be seen as a correction of the linear advection scheme for the presence 
of an additional nonlinear flux.  

The total cell fluctuation can be calculated with aid of the Simpson integration. The Gauss integral 
over the triangle edges (eq.30) must be evaluated with a higher order integration scheme (e.g. 
Simpson Rule) because if first order schemes, such as the “Trapezoidal Rule”, are used, the resulting 
scheme will not accurately conserve the fluctuations of the cell and may generate greater negative 
values in the vicinity of large gradients in the solution. The flux at the middle of each edge can be 
defined as the product of the average edge normal velocities and wave action densities at the nodes of 
each edge. 

 
3

j
1

n n
j

T j
jT l

ds ds
=∂

Φ = − ∇ ⋅ = ⋅∑∫ ∫

    (34) 

The Simpson rule for one edge reads: 

 ( ) ( )n 4
6 2

i

j

l

l a bds F a F F b⊥ ⊥ ⊥

 +  ⋅ = + +    
∫   (35) 

F┴ are the edge normal fluxes at the beginning and the endpoint of the edge and are defined as: 

 
( )
( )

,

,

a j

b j

a

b

F a c N

F b c N

⊥
⊥

⊥
⊥

= ⋅

= ⋅
 (36) 

a and b are representing the beginning and the endpoint of the edge and the index j runs over the 
edges of the triangle. Na and Nb are the wave actions and 

,a j
c⊥  and 

,b j
c⊥ are the advection velocities 

normal to the edge j at point a and b respectively.  

The average wave-action-flux at the middle of the edge j is defined as with the average values of the 
wave action and the normal advection velocity at each node of edge j, this is the only way to allow for 
a weakly non-linear variation along the edge of each triangle3.  

 , ,

2 2 2
a j b j a b

c c N Na bF
⊥ ⊥

⊥

+ ++  = ⋅ 
 

 (37) 

 
                                                      
3 The author is thankful for the discussion with Herman Deconinck with respect to this issue. 
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This can be rewritten as 

 ( ) ( ), , , ,
4

2 a j b j a j b ja b
a bF N c c N c c⊥ ⊥ ⊥ ⊥

⊥

+  = + + + 
 

 (38) 

Using eq. 36 and eq. 37 one can rewrite eq. 35 as: 

 ( ) ( )( ), , , ,
2 2

6 a j b j a j b j

j

j
a b

l

l
nds N c c N c c⊥ ⊥ ⊥ ⊥⋅ = + + +∫
  (39) 

For all edges of a certain element this can be written in a discrete form introducing node numbers i, 
i+1 and i+2 for a, b and c as 

 

( ) ( )

( ) ( )

( ) ( )

,1 1,1 2,3 ,3

1,2 2,2 ,1 1,1

2,3 ,3 1,2 2,2

31

2 1
1

3 2
2

2 2
6 6

                    2 2
6 6

                    2 2
6 6

i i i i

i i i i

i i i i

i
T

i

i

llnds N c c c c

l lN c c c c

l lN c c c c

+ +

+ + +

+ + +

⊥ ⊥ ⊥ ⊥

∂

⊥ ⊥ ⊥ ⊥
+

⊥ ⊥ ⊥ ⊥
+

 ∇ ⋅ = + + + + 
 

 + + + + 
 
 + + + 
 

∫






  (40) 

With some algebra eq.40 can be expressed as 

 
3

1
T i i

iT

nds N δ
=∂

Φ = ∇ ⋅ =∑∫




   (41) 

with 

 

( ) ( )
( ) ( )
( ) ( )

,1 1,1 2,3 ,3

1,2 2,2 ,1 1,1

2,3 ,3 1,2 2,2

31
1

2 1
2

3 2
3

2 2
6 6

2 2
6 6

2 2
6 6

i i i i

i i i i

i i i i

ll c c c c

l lc c c c

l lc c c c

δ

δ

δ

+ +

+ + +

+ + +

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

= + + +

= + + +

= + + +
  (42) 

The coefficient δi depends on the velocities at the edges and the geometry of the triangle. Using eq. 41 
and eq. 34, eq. 32 can be rewritten as 

 
( )

3

1

3 3

1 1

3

1

   

   

i i T
i

i i i i
i i

i i i
i

N n k N

n k N N

n N k

δ

δ

+

=

+

= =

+

=

 = ⋅ −Φ 
 
 = ⋅ − 
 
 = ⋅ − 
 

∑

∑ ∑

∑









  (43) 
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In this way, the upwind fluctuation can be expressed only with the nodal values that are functions of 
the geometry and the wave kinematics. This is important for the derivation of the implicit FS 
schemes. The CRD-N scheme has very similar characteristics as the standard N-Scheme. It is as 
explicit as the first order space/time scheme that is monotone under the CFL condition given in eq. 19 
and conservative.  

However, the presented variant of the N-scheme is quasi-positive, since for the CRD-approaches 
positivity cannot be proven due to the numerical integration of the flux function along the edges (Csik 
et al. 2002). However, the resulting scheme is monotone and the negative values are neglectable and 
do not alter in a practical sense the conservation of the scheme when set to zero. The above set of 
discrete equations describes the CRD-N scheme as it is implemented in the WWM II, WW-III and 
WAM.  

2.1.2. The CRD-LDA (Low Diffusion Approximation) scheme 

The LDA (Low Diffusion Approximation) scheme is of first order in time, second order in cross flow 
direction and first order in longitudal flow direction. The scheme is LP, but since it is linear, it is not 
positive and therefore non-monotone due to the Godunov theorem. However, the LDA-scheme is used 
in combination with lower order schemes (e.g. N-scheme) to design nonlinear schemes which fulfil all 
the above-mentioned design criteria such as the PSI (Positive Streamline Invariant) scheme or the 
FCT scheme using residual distribution. The nodal fluctuation of the standard LDA scheme reads for 
a certain element (e.g. Abgrall, 2006): 

 ,i T i Tnk +Φ = − Φ   (44) 

It is easy to see that the above given scheme is conservative since the sum of the redistribution 
coefficients is unity when cumulated over all nodes of the element: 

 
3 3

1 1
1i i

i i
nk α+

= =

− = =∑ ∑   (45) 

In order to formulate a contour integration based LDA scheme, the total fluctuation in eq. 44 must be 
replaced by eq. 41 in order to solve the conservative form of the WAE. The LDA scheme is a higher 
order linear scheme and therefore not positive and non-monotone. The resulting scheme achieves first 
order accuracy in time and second order in cross flow direction and first order in longitudal flow 
direction.  

2.1.3. The CRD-PSI-scheme 

As given in the introduction of this chapter, a scheme, which is conservative, positive, and linear 
preserving, must be, due to Godunov’s Theorem, a nonlinear scheme. The PSI-scheme fulfils these 
demands and it was constructed with the aid of a blending parameter, which reduces the contribution 
of the higher order scheme when non-monotone solutions are present (e.g. Abgrall, 2001). The nodal 
fluctuation of the PSI scheme can be defined with the blending parameter according to Abgrall (2002) 
as: 

 ( ), , , , , ,1i T PSI i T N i T LDAl lΦ = ⋅Φ + − ⋅Φ   (46) 
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with 

 ( ) ( ) ( )( )1 2 3max , ,l r r rφ φ φ=   (47) 

and 
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           else,
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x x
x xϕ

Φ
=
Φ

 < = − 
     (48) 

The resulting scheme is nonlinear and it was shown by several authors that the scheme satisfies the 
above defined design criteria. Using the CRD-N scheme and the CRD-LDA scheme, the resulting 
CRD-PSI holds for any conservation law as the one given through eq. 2. The scheme is first order in 
time and it is at its best second order in cross flow direction and first order in longitudal flow 
direction. The scheme is positive for a linear conservation law. The PSI scheme was used hereinafter 
to construct a truly second order space-time scheme, which retains the above-defined design criteria 
on the foundation of the CRD approach of Csik et al., 2002.  

2.1.4. The CRD-FCT-LW-PSI scheme  

Hubbard & Roe (2000) combined two fluctuation splitting schemes, namely the PSI scheme presented 
above and the non-monotone higher order Lax-Wendroff RD-scheme in order to design a monotone 
and positive scheme. In this thesis, the author used the concept of Csik et al. (2002) to formulate a 
contour integration based version of the Residual Distribution (CRD) Flux Corrected Transport 
scheme (CRD-FCT-LWPSI). The Lax-Wendroff scheme in the RD context reads: 

 ,
1
3 2i T i T

i

t k
A

 ∆
Φ = + Φ 

 
  (49) 

This was achieved with a generalized FCT approach in the context of the RD-framework. The scheme 
is written in a form, which isolates the cell contribution and limits the contribution of the non-
monotone scheme in an optimal way near discontinuities. This is done in an optimized way in order to 
retain the higher order solution as often as possible. The FCT approach in the FS context can be 
described in four basic steps.  

First, the higher (HEC) and lower order contributions (LEC) from the Lax-Wendroff and PSI scheme 
are computed and the difference of the node wise contribution of each scheme is estimated and 
defined as the so called AEC (Anti diffusive Element Contribution): 

 
, ,i T i T

LAX PSI
iAEC = Φ −Φ   (50) 

In the 2nd step the low order solution is calculated using eq.16 which gives then  

 
,

, 1

,
i T

i

PSI n n PSI
i i

T i Ti

tN N
S

+

∈

∆
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In the third, most important step, the AEC must be corrected in such a way that the solution at the new 
time level is monotone. This is achieved with correction factors βi leading to: 

 ,i corr i iAEC AECβ= ⋅   (52)  

The final update is obtained by advancing in time and adding the corrected AEC to the solution of the 
lower order scheme according to:  

 1 , 1
,

, i

n PSI n
i i corr i

T i Ti

tN N AEC
S

+ +

∈

∆
= + ∑   (53) 

The main problem in such an approach is to formulate the correction factors βi which must also 
guarantee conservation in the case of the RD-approach. The procedure for the calculation of the 
correction factors is described in detail in Hubbard & Roe (2000) and will not be repeated for the sake 
of brevity. The author has also considered in this thesis another non-monotone scheme, which is the 
2nd order upwind control volume (UCV) scheme of Paillere (1995) that reads: 

 , 3

1

1 3
3 3

i
i T T

i
i

k

k +

=

 
 
 Φ = + Φ
 
 
 

∑
  (54) 

The scheme was also incorporated in the FCT approach, but the results have been not as good as for 
the scheme suggested by Hubbard & Roe. As the FCT scheme in this thesis was constructed on the 
foundation of the above described CRD schemes, the total fluctuation in was calculated numerically 
integrating the flux function over the element edges. The resulting scheme should be conservative for 
arbitrary flux functions. In fact the author did not find any situation where the opposite occurs and the 
schemes are used as well in the TIMOR (Tidal Morphodynamics, Zanke, 2002) for the solution of the 
tracer transport and the Exner equation.  

2.2. Verification of the advection schemes 

2.2.1. The “rotating cylinder” 

In order to verify the numerical schemes the “rotating cylinder” test case was investigated, which was 
also used by Hubbard & Roe (2002) and used in many studies to verify the implementation and the 
diffusion characteristics of the scalar advection schemes. In a quadratic domain Ω = [-1,-1] – [1, 1] the 
advection velocity vector is given as: 

 
y

x
λ

− 
=  
 



  (55) 

This results in a circular current field in which the initial state is equivalent to the analytical solution 
after one rotation. The initial distribution of the unknown is discontinuous at the edges of the cylinder 
(see Fig.5) and defined as follows:  
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1,     if 0.25
0,     else          

r
N

≤
= 


  (56) 

with  

 ( )22 20.5r x y= + +   (57) 

The domain is resolved using a conformal triangulation with 4635 and 9001 elements. For the explicit 
schemes the integration time step was set to 0.01 s resulting in a CFL number with a maximum value 
of 0.997 at the boundary of the domain. The maximal and minimal values of the solution for the 
whole simulation and for the results after one rotation are shown in Table 1. It can be seen that the 
higher order non-monotone schemes (CRD-LDA. CRD-LAX and CRD-UCV) exhibit negative values 
during one rotation.  

 

Figure 5: Left: Initial values, analytical solution after one revolution and computational mesh. 
Right: Velocity distribution according to eq.55. 

The CRD-LAX scheme result has pronounced negative values and unwanted maxima after one 
evolution. The CRD-LDA and the CRD-UCV scheme lead to moderate negative values but are much 
more dissipative since the peak value after one revolution is reduced to 0.61 and 0.55 respectively. 
The monotone linear N-scheme is the most dissipative one since half of the peak values is lost after on 
revolution. The monotone nonlinear CRD-PSI scheme is nearly as dissipative as the CRD-N scheme 
with a maximum of 0.52 after on rotation. Clearly, the best results are obtained with the CRD-FCT 
scheme. The maximum is preserved and the negative values occurring are neglectable4. 

 

Numerical Scheme CRD-N CRD-LDA CRD-LAX CRD-UCV CRD-PSI CRD-FCT
Min.value 0.00 -0.14 -4.00 -0.12 0.00 0.00
Max. value 1.00 1.12 1.65 1.11 1.00 1.00
Min. after one rotation 0.00 -0.06 -0.36 -0.03 0.00 0.00
Max. after one rotation 0.49 0.61 1.44 0.55 0.52 1.00

CFL = 1.0

 

Table 1: Minimum and maximum values of the solution during one rotation and after one 
rotation for the explicit RD-schemes. 

                                                      
4 The smallest negative value for the CRD-FCT scheme for this test case was -8.67E-19 
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The results of the numerical simulation for the cylinder after one revolution using the explicit RD-
schemes are plotted in Fig.8. The analytical solution equals in that case the initial one. The results 
show that the CRD-N-Scheme is the most diffusive one. The numerical diffusion in cross and 
longitudal direction is considerable. The CRD-LDA scheme reduces the diffusion in cross flow 
direction and maintains much better the maximum, but the non-monotone character leads to negative 
values in the solution (e.g. negative wave action). The CRD-LAX scheme results in even stronger 
negative values than the CRD-LDA scheme, the original distribution is distorted, and the solution is 
oscillative at the wake of the cylinder. Moreover, there is a kind of phase lag in the solution. The 
central scheme by Paillere (1995) has very similar characteristics as the CRD-LDA scheme.  

 

Figure 6: Comparison of the explicit RD-schemes for a rotating cylinder. At the top left: CRD-N-
Scheme, top right: CRD-LDA scheme, middle left: CRD-Lax-Wendroff-scheme, middle right: 
CRD-UVC-scheme, bottom left: CRD-PSI-scheme and at the bottom right the CRD-FCT-FS 
scheme. Note: Values greater or smaller then the colour scale are not plotted and leaved blank. 
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The CRD-PSI scheme shows the combination of the results of the CRD-N and CRD-LDA scheme. 
No negative values but a higher cross diffusion than with the CRD-LDA scheme though smaller than 
with the CRD-N-scheme. The best results have been obtained with CRD-FCT scheme, which 
maintains the maximum values also after one revolution.  

The phase lag of the CRD-LAX scheme is reduced, but the initial distribution undergoes a 
deformation during one revolution. In the wake of the cylinder the CRD-LAX solution can still be 
identified, but the successful reduction of the AEC fluxes results in a positive solution in that region.  

2.2.2. Sheltering by Islands 

One major benefit of using genuinely unstructured meshes is the flexible discretization of the domain, 
which makes it possible to discretize even very tiny islands and take in this way in a very elegant way 
the sheltering into account. Of course on global scale in Deep Ocean, where structured models are still 
far more efficient and better tested, obstruction maps are the most economic solution to take this into 
account, but once moved from sub-grid scale to a discrete representation it is of interest to investigate 
the accuracy of the solution method for the case of sheltering due to islands. The analytical solution is 
here clear and simple, behind the island there should be zero wave action since there is no diffusion 
part. The only cross diffusion introduced is the one by the numerical method. Below in Figure 7 a 
simple unstructured mesh was designed with an island in the middle. The depth is constant 10km and 
the wave boundary condition is simply described as all energy (Hs = 1m) was put in one bin at a 
carrier frequency of 0.1 Hz.  On the right hand side of Figure 7 the solution, where the white colour 
indicated 1m significant wave height and the sheltering is shadowing of the islands is then shown by 
greyscales where black means Hs = 0m.  The results reveal that the ideal solution is far from being 
met by all schemes; however, the influence of the numerical stencil in time and space is clearly 
visible. 

 

 

Figure 7: Sheltering by Islands; left: numerical mesh; right top: N-Scheme, right middle: PSI-
Scheme, right bottom: LF scheme.  
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Figure 8: Islands sheltering in the Mediterranean Sea; idealized case. From top to bottom: N-
Scheme; PSI-Scheme and LW-Scheme  

If there would be some buoys just in the sheltering region, where the variation due to the numerical 
schemes is pretty high, numerics would have a major impact on the solution. In addition to sheltering 
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also the penetration depth of wave energy between islands can be a major source of error. Above 
(Figure 8) a similar case as the idealized one is shown by just putting same wave boundary conditions 
as used above in the middle of the Mediterranean Sea heading eastward towards Crete (mesh from 
Figure 1).  The sheltering of Crete is clearly visible as well as the influence of the numerical schemes. 
Another one quite interesting feature in this solution is the penetration depth of wave energy between 
the Islands of Rhodes and Karpathos. It can be clearly seen that on one hand numerical diffusion 
results in too little sheltering or wave energy but on the other hand wave energy may not even reach 
certain places due to diffusion where higher order schemes still do show penetration of wave energy. 

2.2.3. Shoaling 

Validation of the flux term (2nd term at the right hand side of eq. 29) can be easily done by 
prescribing a simple bathymetry with linear slope in this case ranging from 20.1m up to 0.1m (the 
mesh ends at a depth of 0.1m in the last row of elements at the shore; Figure 9) in shallow water at the 
southern boundary we prescribe similar boundary conditions as above (Hs = 1m, freq. = 0.1Hz) 
travelling perpendicular to the depth lines. The analytical solution is simply given by solving the flux 
equation in 1d, which results in terms of Hs 

 ,2
,

g i
s s i

g

c
H H

c
= ,  (58) 

where the index  i indicates incidence wave condition. All three discretization methods have been 
compared and the results are shown in terms of relative errors in percent.  

 ,

,

 100s s analytical

s analytical

H H
Err

H
−

= ×    (59) 

The results clearly show the accuracy of the method up to very shallow waters (Figure 10) where 
quite high gradients in the solution are present (see Figure 10), here the results depend strongly on the 
discretization but this region is in natural conditions strongly affected by wave dissipation. It can be 
clearly seen that also for this case the higher order schemes have smaller numerical errors that reduce 
from 2.7% in case of the CRD-N scheme to 1.5% for the CRD-LW-PSI scheme.   

Based on these results it can be said that the implementation of the schemes in validated. In terms of 
computation performance the PSI scheme is approx. 1.5 as expensive as the N-Scheme and the LW 
scheme is approx. 2.8 times more expensive than the N-scheme.  

From my experience and based on the present representation of the physics in the models, taking into 
account the lack of modelling diffraction and treating GSE (at least on unstructured meshes) the PSI 
schemes is the scheme to be used.  The implementation of the PSI scheme within the CRD approach 
using implicit time integrators will be the next step for the author.  
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Figure 9: Left: numerical mesh; Right: depth in the computational domain.  
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Figure 10: Solution of the WAE for linear depth profile 



ROLAND, A.: APPLICATION OF RESIDUAL DISTRIBUTION (RD) SCHEMES … 

ECMWF Workshop on Ocean Waves, 25-27 June 2012 37 

0

0.5

1

1.5

2

2.5

3

0 500 1000 1500 2000 2500 3000 3500 4000

Length [m]

Er
ro

r [
%

]

0

2

4

6

8

10

12

14

16

18

20

W
at

er
 D

ep
th

 [m
]

CRD-N-Scheme
CRD-PSI-Scheme
CRD-FCT-LWPSI-Scheme
Depth

 

0

0.5

1

1.5

2

2.5

3

3000 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000

Length [m]

Er
ro

r [
%

]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

W
at

er
 D

ep
th

 [m
]

CRD-N-Scheme
CRD-PSI-Scheme
CRD-FCT-LWPSI-Scheme
Depth

 
Figure 11: Errors over the whole domain (top) and in the vicinity of the shore (bottom) 

3. Outlook and Conclusion  
The formalism of RD schemes has been introduced to the WAE. There is no reason why it should be 
only applied in geographical space, spectral space could be treated as well but since the two operators 
in spectral space are not commuting, similar to x- and y-space advection, the use of a splitting as done 
in WW3 is quite nice for spectral space. The problem of splitting the equation and the ongoing errors 
in splitting remains a problem of most of the implementation (as discussed in Roland, 2009). Another 
possibility besides the splitting would be, since the RD-schemes are inherently multidimensional, a 
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non-split solution of the advection part of the WAE on unstructured meshes, which would actually 
resemble the numerics of the SWAN model but on unstructured meshes. If so, the question of the 
limiter must be thoroughly investigated since it is not acceptable, that for non-stationary simulations 
the whole left hand side of the equation becomes limited only because we cannot linearize all source 
terms properly (remember: Patankar’s Laws, that say that proper linearized 1st order schemes are 
unconditionally stable). Moreover, the stiff contributions of the different terms may result in large 
Eigenvalues in the matrix resulting in ill-conditioned systems. Therefore A-stable schemes need to be 
used and a proper numerical framework has to be implemented.  

However, here are not only numerical issues to be taken into account but of course also physical as 
e.g. wave diffraction, which will in a certain way result in cross diffusion of wave energy in the 
shadowing region of islands. From my point of view it is not a proper approach to approximate 
physics by numerical errors but this is and will stay reality to certain extend also in the next decade.  

This statement is of course highly idealistic but progress and physics must go hand in hand with 
improved numerical math otherwise the remaining parameters of the partly empirical physical 
processes depend to a certain extend on the numerical schemes. 
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