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ABSTRACT

I go back to fundamental Bayesian principles to discuss the design of four-dimensional variational data assim-
ilation methods, taking account of what has been found important over the past 30 years and what is likely to
increase in importance as bigger computers allows higher resolutions and more sophisticated algorithms. Deter-
ministic 4D-Var, statistical incremental 4D-Var, and developments in covariance modelling are all discussed, as
are the impact on 4D-Var of chaos and the butterfly effect, and concepts of spin-up. Finally, 4D-Ensemble-Var is
outlined as a potential method for keeping most of 4D-Var (but not the perturbation and adjoint models) at high
resolution on future massively parallel computers.

1 Introduction

Four-dimensional variational data assimilation (4D-Var) is a mature technology – it has been the method
of choice for most major global numerical weather prediction (NWP) centres for the past decade. The
predictive skill of NWP has been improving steadily over the past 3 decades; 4D-Var has contributed,
but most of the improvement is due to better forecast models. Some improvement is due to better ob-
servations, although more is due to better use of all observations. Our challenging goal is to continue
this rate of improvement, using increases in computer power, more observations and better mathemat-
ical techniques, without giving up these past successes. In section 2 I briefly review the causes of past
improvements. NWP systems are very complex – a successful stratagem has been to base each devel-
opment on scientific insight and mathematical analysis of a component of the problem, so in section
3 I review the theoretical basis of 4D-Var. Section 4 covers improvements that are being developed in
the statistical Bayesian framework of 4D-Var, in particular to the representation of the prior PDF which
summarises the accuracy of the information which has been carried forward by the ongoing data assim-
ilation process. Section 5 looks more from a dynamical systems viewpoint; the atmosphere is nonlinear
and chaotic and these properties are becoming increasingly important as we move to higher resolutions.
Finally, section 6 mentions some worries about the efficiency of 4D-Var on future massively parallel
computers, and the 4D-Ensemble-Var which is being developed in several centres as a possible way
round them.

2 Historical background – What aspects are important to retain from
current NWP systems?

Figure 1 shows one of the longest available series on NWP verification statistics and, like many similar
results, demonstrates a steady improvement of about a day’s predictive skill per decade. Attributing the
improvement is less straightforward: it coincides with my career at the Met Office, but I do not claim I
caused it! The impact of each upgrade to an operational system is measured in pre-operational trials; I
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Figure 1: Record of Met Office forecast RMS surface pressure error over the N. Atlantic & W. Europe.

was involved in the Met Office’s and saw many others reported at WGNE meetings (WMO (2007)). But
some changes interact – often the full benefits are not seen until a subsequent change re-tunes what was
previously a compensating error. The largest improvements are due to better forecast models, especially
higher resolution. The computer power available to NWP has doubled about every 18 months, giving a
106 increase over the last three decades. Most of this has been spent on resolution, with only a factor
of 10 on improved DA algorithms and model formulation. The trend to higher resolutions continues,
although in the coming decades some power will also be deployed on ensembles. The improvements
were studied by Simmons and Hollingsworth (2002). They concluded that a major element was bet-
ter usage of satellite data, especially the variational assimilation of radiances. They also pointed out
that since about 2000 the average one-day forecast errors were less than those of observations such
as radiosondes. This is understandable: as assimilation improves, the forecasts effectively incorporate
information from the last few days of observations, and hence contain more useful information than
the current batch of observations. Revised background error terms in variational assimilation, taking
account of this, have been a major contributor to the continuing decrease in errors. 4D-Var implements
an implicit four-dimensional background error covariance model (Lorenc (2003a)), so is the natural ex-
tension to this trend. The impacts of three recent 4D-Var implementations were compared in Rawlins
et al. (2007); all gave significant improvements in their year of implementation. In the comparison of
verification results organised by CBS, most of the top global forecast centres now use 4D-Var.

It has been common to attribute a major part of the improvement to satellites, but in fact improvements
in usage have been more important than improvements in the observation themselves. A review of
recent observing system experiment (OSE) studies (WMO (2008)) estimated that most satellite systems
contribute up to about 6 hours in skill. This is consistent with Met Office OSEs (Dumelow (2009))
which show that even with all satellite data omitted (or indeed all sondes), northern hemisphere scores
were better than those from an “All Data” OSE run 6 years previously. In other words, model resolution
improvements and 4D-Var implementation in that period were more important than all the satellites.
Comparison of re-analyses using modern systems with operational results at the time shows a similar
story (e.g. Onogi et al. (2007)) – about a quarter of the improvement over the last 3 decades came from
improvements to the observing system, three quarters came from improvements to the NWP and data
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assimilation systems.

In summary: NWP systems are improving by 1 day of predictive skill per decade. Over the past 3
decades this has been due, in order of importance, to:

1. Model improvements, especially resolution.

2. Careful use of forecast and observations, allowing for their information content and errors; achieved
by variational assimilation, e.g. of satellite radiances.

3. 4D-Var.

4. Better observations.

Another important lesson from practical experience is in coping with complexity. NWP systems are
very large – too large to be analysed as an entity and improved with confidence. They are also very
expensive to test (more about this in section 5.1) – too expensive for all developments to be thoroughly
tuned and tested in the full NWP system. Because of this complexity, the only consistent way of making
improvements is to base each on scientific insight and mathematical analysis of a component of the
problem, with the belief (checked by testing) that theoretically better parts will ultimately lead to a
better whole, while at least not harming shorter term performance.

3 Derivation of 4D-Var

3.1 Deterministic – fitting a model evolution to observations

I first summarise1 the traditional way of deriving 4D-Var. Notation follows Ide et al. (1997) with an
extension that, to avoid explicit summations over time, underlined variables include the time-dimension
and underlined operators produce underlined variables. For the time being I assume a perfect forecast
model, so that knowledge of initial conditions x defines a four-dimensional trajectory x = M (x). We
want to find the best fit of this trajectory to observations distributed in time (yo) and a prior estimate of
x (xb ). We could simply define best to be a minimum variance solution, but to link with later I prefer a
Bayesian derivation. An expression for the probability distribution function (PDF) is:

P
(
x|yo)

∝ P(x)P
(
yo|x

)
. (1)

We assume the prior PDF for model state x is a Gaussian with mean xb and covariance B:

P(x) ∝ exp
(
−1

2

(
x−xb

)T B−1
(
x−xb

))
. (2)

The observations in the time-window, yo, are usually assumed to have Gaussian errors in observation-
space, with covariance R, uncorrelated with background errors:

P
(
yo|x

)
= P

(
yo|y

)
∝ exp

(
−1

2

(
y−yo

)T R−1 (y−yo
))

, (3)

where y represents the estimate of the observations calculated from x using observation operator H:

y = H (M (x)) (4)

1based on a fuller presentation in Lorenc and Payne (2007)
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Figure 2: Deterministic 4D-Var. The initial PDF is approximated by a Gaussian. The descent
algorithm only explores a small part of the PDF, on the way to a local minimum. The 4D analysis is
a trajectory of the full model, optionally augmented by a model error correction term.

M and H are nonlinear, so the PDF obtained by substituting ((2)), (3) and (4) into (1) is not Gaussian.
It is not practicable to evaluate this full PDF for an NWP system, so it is convenient to assume that the
desired estimate is the x which maximises P

(
x|yo

)
, or equivalently minimises

J (x) = 1
2

(
x−xb

)T B−1
(
x−xb

)
+ 1

2

(
y−yo

)T R−1 (y−yo
)

(5)

subject to (4). This is commonly called the 4D-Var penalty function. The gradient of J with respect to x
is given by

∇xJ (x) = B−1
(

x−xb
)

+M∗H∗R−1 (y−yo) (6)

where M∗ and H∗ are the adjoints of the jacobians of M and H, taken at point x. Equations (5) and (6)
are used in an iterative descent algorithm illustrated schematically in figure 2. This is affordable as only
a small part of the full PDF is explored.

In practice this method cannot be applied to current NWP models. The issues are more fundamental than
the use of “IF” tests in most NWP models M; they are due to the physical processes being represented
and the principle discussed at the end of section 2 that each component of the complex NWP system
should be based on physical understanding. The atmosphere has many processes which often do not
give a gradient (6) pointing towards the minimum of (5):

Thermostats: Fast processes which are modulated to maintain a longer-time-scale “balance” (e.g.
boundary layer fluxes).

Limits to growth: Fast processes which in a nonlinear model are limited by some available resource
(e.g. evaporation of raindrops).

Butterflies: Fast processes which are not predictable over a long 4DVar time-window (e.g. eddies with
short space- & time-scales).

Observations of intermittent phenomena: If something (e.g. a cloud or rain) is missing from a state,
then the gradient does not say what to do to make it appear.
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Figure 3: Statistical, incremental, 4D-Var approximates entire PDF by a Gaussian. The 4D analysis
increment is a trajectory of the PF model, optionally augmented by a model error correction term.

These are fundamental atmospheric processes – it is impossible to write a good NWP model, following
the principle that each component is based on a physical understanding, without representing them.

3.2 Statistical 4D-Var: the extended Kalman filter

The problem discussed in the previous section can be avoided if we seek a more appropriate “best”
estimate. To define what is best, it is necessary to specify a cost function measuring the additional costs
incurred by issuing an imperfect forecast. The simplest is a quadratic cost: the expected root mean
square error (RMSE) is minimised by the mean of the PDF:

xa =
∫

xP
(
x|yo)dx. (7)

This integral requires evaluation of the whole PDF, rather than the relatively few function and derivative
evaluations needed in the descent algorithm of deterministic 4D-Var. Eq. (7) is not amenable to calcula-
tion for PDFs as complicated as (1) for a full NWP model. However, rather than minimising the wrong
equation (5), it may be better to find an approximate solution to (7). Lorenc (2003a) suggested one way
to do it in the context of 4D-Var, based on the fact that the mode of a PDF is also its mean, as long as
the distribution is Gaussian. It is the nonlinear evolution of the prior PDF P(x) by M which makes (1)
non-Gaussian and (5) non-quadratic. So let us instead approximate that evolution by M̄, which predict
the evolution of the mean, and a perturbation forecast (PF) model M̃ which gives linear best estimates
of the evolution of finite perturbations about this mean (Fig. 3).

If necessary, a similar strategy can be applied to H, H̄ and H̃. (Note that we can easily extend the
approach to models with errors, by augmenting the model variables to contain also parameters describing
the errors. I do not show these terms here – they are in Lorenc (2003a).) The whole PDF (1) (rather than
its behaviour near its mode) is then approximated using an incremental approach about a guess xg of the
ensemble mean (Courtier et al. (1994)):

x = xg +δx. (8)
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P(δx|yo) ∝ exp
(
−1

2

(
δx−

(
xb−xg

))T B−1
(
δx−

(
xb−xg

)))
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y = H̃M̃δx+H (M̄ (xg)) (10)

Since (10) is linear in δx, (9) is Gaussian. So if we use the same descent algorithm approach to efficiently
approximate the minimum of

J (δx) = 1
2

(
δx−

(
xb−xg

))T B−1
(
δx−

(
xb−xg

))
+1

2

(
y−yo

)T R−1 (y−yo
) (11)

subject to (10), we are also approximating the mean of (9). By construction (11) is quadratic, so we
avoid the minimisation problems which plague (5).

Unfortunately this approach is not fully satisfactory either. As discussed in section 2, it has been found
to be beneficial to use the best available, high-resolution, model to carry information forward, so that we
retain information from past observations as accurately as possible. Components of NWP models are
developed based on physical principles. We do not have an accurate model M̄ to predict the evolution of
the mean of the PDF (a non-physical field), as required by (10). So in practice we use the normal NWP
model M. To reduce the effect of linearisation errors, (11) can be iterated a few times in an outer-loop,
updating xg. This gives a compromise between the “deterministic” and “statistical” approaches; we are
trying to fit the full model to the observations, but the method used to do this considers an approximation
to the full PDF rather than just seeking a local mode.

It is worth highlighting how large in practice are the approximations in (10). We can measure this using
the linearisation error εlin = Mδx− (M (x+δx)−M (x)), calculated for typical perturbations δx of
similar size to the analysis increment. Then the relative error is a norm ‖.‖ is given by

R =
‖εlin‖

‖M (x+δx)−M (x)‖
(12)

If R > 1 for any norm relevant to observations, it is likely that the analysed correction δx will not
improve the fit of the full model integration to those observations. For some variables (e.g. humidity)
and forecast lengths of 6 hours or more, R is much closer to 1 than zero (Radnóti et al. (2005)).

4 Developments to covariance modelling

4.1 Flow dependence

I stressed in section (2) that an important part of the improvement in forecasts was due to the correct
(Bayesian) combination of information from the current observations with the forecast prior (which
summarises the information from previous observations). Much important and detailed work is needed
to correctly characterise the error PDF of each type of observation – the variance, the bias and the
probability of gross error (e.g. talks by Rabier and Desroziers this seminar). I will concentrate on the
prior or background error distribution. An NWP model is very large, and the errors for different variables
are strongly related, so the best we can normally attempt is to model the error covariance B. The first
operational 3D multivariate statistical analysis method (Lorenc (1981)) made the following assumptions
about the B which characterizes background errors, all of which are wrong!

Stationary – time & flow invariant
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Balanced – predefined multivariate relationships exist

Homogeneous – same everywhere

Isotropic – same in all directions

3D separable – horizontal correlation independent of vertical levels or structure & vice versa.

Since then many valiant attempts have been made to address them individually, but with limited suc-
cess because of the errors remaining in the others. The most attractive ways of addressing them all are
long-window 4D-Var or hybrid ensemble-VAR. Thépaut et al. (1996) showed that a constant “climato-
logical” covariance evolved into plausible flow-dependent patterns in a 24 hour 4D-Var window, Zhang
et al. (2007) showed that even random structures grow to similar patterns in 24-36 hours, while Fisher
et al. (2005) showed that there is no advantage to going beyond 5 days. Fisher (this seminar) discusses
how such a long window might be affordable. Alternatively, ensemble Kalman filters allow a sample
of error patterns to grow over a long window. As well as the many flavours of ensemble Kalman fil-
ter, there are two alternative methods of using these patterns in a variational covariance model. Firstly,
one can estimate parameters of the covariance model from the ensemble. Bonavita (this seminar) de-
scribes such a system. This approach retains the proven benefits of the existing variational method,
but it is difficult to address all the weaknesses listed above. For instance Montmerle and Berre (2010)
demonstrated a situation dependence to the inter-variable correlations, and many studies have shown
non-isotropic flow-dependent correlations – neither are easy to parametrise. The second approach is to
use the ensemble perturbations, after localisation, directly to augment (or even replace) the traditional
covariance model. The Met Office has just implemented such a hybrid ensemble-4D-Var scheme giving
a considerable benefit (Barker, this seminar). There is potential for this approach to even replace the
linearised perturbation model within 4D-Var; I say more about this in section 6.

4.2 Non-Gaussianity

It is not possible to represent many aspects of a PDF for as many variables as an NWP model; we
usually only consider mean errors and covariances. But in some cases it has been found advantageous
to change to variables with more Gaussian errors. Several centres (e.g. ECMWF, HIRLAM and the Met
Office) have implemented a nonlinear humidity transform to compensate for the non-Gaussian errors of
humidity forecasts (Hólm (2003), Gustafsson et al. (2011), Ingleby et al. in preparation). The largest
cause of the non-Gaussianity is the physical limits to humidity – it must always be positive and seldom
goes very super-saturated.

Let us assume that our forecast model is unbiased, in that its distribution of model humidity values is the
same as that of the atmosphere mapped into model space. This “truth” state is the goal of our assimilation
process and background errors are in principle measured from it. As we do not know it, we have to study
background errors using a proxy – in this section for illustrative purposes I use a large set of radiosonde
observations mapped to model levels. Figure 4, adapted from Lorenc (2007), show the joint distribution
of background and observed (proxy true) values from the Met Office global assimilation. It is close to
symmetric about the diagonal, showing that our assumption is reasonable. Yet the distribution of true
values conditional on any particular background value is biased, with mean value given by the dash-dot
line. So, without considering observations, the minimum variance best estimate of the true RH would
be obtained by bias correcting the background to this line. The resulting overall distribution would not
be correct – no RH would be greater than 90% so there would be insufficient cloud and precipitation
in the subsequent forecast. The method suggested by Hólm (2003) is to use probability distributions
conditional on (RHb+RHa)/2. We can illustrate the effect by plotting the joint PDF of the difference
in RH and the mean RH (not shown since it is equivalent to figure 4 rotated by 45 degrees). This is
unbiased. However having the assumed probability distribution dependent on the analysed value makes
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Figure 4: Joint PDF of collocated background RH from the Met Office global 6 hour forecast and
observed RH mapped to model levels, for 740328 radiosonde soundings from December 2005 to
July 2007 (Lorenc (2007)). The dash-dot line (blue) shows the mean sonde RH for each background
RH bin, and the dashed (red) line shows the mean background RH for each sonde RH bin.

the problem implicit, requiring an iterative solution method. ECMWF and HIRLAM put this iteration
in their outer-loops; the Met Office can solve it more accurately, in their non-quadratic inner loop.

This method performs well: there is no spurious bias; the background error standard deviation (which is
a factor in the equation for the analysis increment) can be small when the background RH is near zero
and the increment is negative, making negative analysed values unlikely, while for positive increments
the standard deviation can be larger, making it possible to change near zero background RH to any
positive value. It is interesting to consider precisely which assumptions about the prior distribution we
need to make for this to be the correct Bayesian method:

• The distribution of values in the background, generated by the model, is close to correct – we have
the right cloud cover on average.

• It is important to us to retain this correct distribution – more so than to reduce the expected RMS
error at each point.

The Hólm transform constructs a (skewed) prior whose mode is the background. We rely on a minimi-
sation which finds this mode (not the mean) and hence returns the model background unaltered in the
absence of observations. I say more about this desire to rely on the model in the section 5.2.
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5 Coping with Butterflies

5.1 Predictability and Chaos

Lorenz (1969) pointed out that the atmosphere has many scales of motion and that errors in small
scales will quickly grow and affect larger scales. Revised in detail, this is now the accepted picture
of the growth of errors in the spectral domain (Tribbia and Baumhefner (2004)), commonly known
as the butterfly effect (e.g. Palmer (2005)). Lorenc and Payne (2007) showed that because of the
butterfly effect, conventional deterministic 4D-Var will not work as model resolutions increase towards
the unfiltered continuous limit. They suggested that a solution is to use statistical incremental 4D-Var,
with a perturbation forecast model which is filtered to prevent the rapid growth of scales which would
otherwise grow excessively over the time-window. This idea has been demonstrated in ocean 4D-Var
by Hoteit et al. (2005); it is implicit in the designs of most operational NWP 4D-Var systems which are
forced for computational reasons to use a low resolution linear model in the inner loop.

The butterfly effect is to do with the multiple scales; it means that we cannot necessarily expect 4D-
Var algorithms to continue working as we move to higher resolutions on more powerful computers. At
any given resolution an NWP forecast model is chaotic – chaos is different from the butterfly effect
in that it can be exhibited in toy models with low resolution (e.g. Lorenz (1963)). Abarbanel et al.
(2010), approaching data assimilation as synchronised chaos, say that there must be enough [observa-
tional] controls to move the positive conditional Lyapunov exponents on the synchronization manifold
to negative values. This is normally quite easy to achieve in a low-resolution system with few chaotic
Lyapunov vectors, but in modern practical NWP, with varying observational networks over the globe,
it is much harder to ensure that everything which grows is sufficiently observed. It is quite easy to test
if a data assimilation system (rather than the model it uses) is chaotic. We just run the entire system
with identical inputs from initial conditions which differ by a very small perturbation, as in the original
Lorenz (1963) demonstration of chaos. Figure 5 shows the result of such an experiment with the Met
Office system. The initially small perturbation grows for several days before saturating on an attractor
with RMS differences of order 0.5 m/s for wind components. (An exception is the top of the model,
where differences drift to become increasing large due to the difficulty of controlling model errors and
biases at these levels (Polavarapu this seminar)).

These differences are of course much smaller than those between two free model runs in a similar ex-
periment, but they still represent an irreducible uncertainty in the analyses produced by this DA system.
Deterministic 4D-Var, using the exact tangent-linear model to the NWP model used, would probably
not work. The uncertainty is another reason why trialling of DA system changes is difficult; identi-
cal DA systems can still give apparently random different signals when verified against independent
observations, necessitating a longer trial to get significant results about a real change.

5.2 Benefiting from the Attractor

The problems with long-window 4D-Var for a chaotic model are due to the continuing exponential
growth of some infinitesimal perturbations, and hence of similar perturbations of any amplitude in the
tangent linear model. In the full nonlinear model the growth slows as the amplitude increases, leading
to saturation often at quite small amplitudes as seen in figure 5, so an ensemble Kalman Filter using the
nonlinear model does not have the same problem. Because their predictions remain bounded, chaotic
models have an attractor of states which they might pass through which has much lower dimension
than the space which could be represented if all the model variables were independent. Meteorologists
have long understood this behaviour and developed rules to describe plausible states: both in terms of
balance, modes and power spectra, and also synoptically with conceptual models of fronts, cyclones,
cloud-capped inversions, etc. This is important prior information which we should use in data assim-
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Figure 5: Global RMS differences between u-components in identical NWP assimilations, due to
small initial perturbations in the background at day 0. (Peter Jermey, personal communication).

ilation. For instance a human meteorologist could use a conceptual model of a front to fit scattered
observations and draw an analysis which could be used in an accurate forecast of the weather at a point
ahead of the front. In NWP data assimilation we do not usually use this prior knowledge, we compen-
sate by having a good background forecast, but it would be better to use both. Methods for developing
flow dependent correlations are making a start, but the persistent structures are usually maintained by
nonlinear processes and do not have Gaussian PDFs. For instance Lorenc (2007) showed that vertical
covariances could not describe the errors associated with a cloud-capped inversion. In practice, the best
way we have found of describing the attractor is as “states that the model likes”. Data assimilation
algorithms have regularly used the model in this way, in diabatic nonlinear normal mode initialisation,
spin-up periods, and other approaches which often seemed at the time like simple trial and error engi-
neering and tuning.

Modern incremental VAR methods use it by having a spun-up model state as background, and only
altering it (in a smooth way) when there is clear observational evidence to do so. We used this concept
already in section 4.2. As we move to higher resolutions, with models which are representing the
complex (and poorly observed) structures of convection, the reliance on the model will grow – other
simpler concepts of balance do not hold at the convective scale but there are still clear recognisable
structures for convection (and many more structures which are unlikely ever to occur). So planning
for the future we should select methods which allow the model to spin up and evolve states on the
attractor. The particle filter is the extreme way of ensuring this (e.g. van Leeuwen this seminar). Another
argument for an outer-loop and a long window is that together they seek a spun-up model trajectory
which fits the observations. On the other hand the 4D control variable approach to 4D-Var (Fisher this
seminar) deliberately avoids long model runs in the data assimilation, so may have problems of spin up.
Some EnKF methods recentre the ensemble each cycle about the ensemble mean analysis. This may be
undesirable because the ensemble mean is not on the attractor – a forecast from it would be expected to
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give a poor short-period forecast of “weather” such as cloud and precipitation.

6 4D-Ensemble-Var

It is expected that the computers available for NWP over the next decade will continue to get more
powerful, but in the number of processors rather than the speed of each (Isaksen, this seminar). Using
this power will require a more parallel DA algorithm; the current bottleneck in 4D-Var is the PF model.
Fisher (this seminar) is discussing one approach to making 4D-Var more parallel by changing the control
variable so that time-segments of each PF and adjoint integration can be run in parallel. Here I outline a
more radical approach, doing away with the PF model completely.

The main idea is to extend in time the use of the ensemble perturbations, currently used in the Met Office
operation hybrid ensemble-4D-Var (Barker, this seminar), so they are used to fit the observations in a
time-window as 4D-Var does, but without the cost of iterating a PF and adjoint model. The potential of
Ensemble Kalman Filters to do this has been recognised for some time (e.g. Lorenc (2003b)). Hunt et al.
(2004) demonstrated it with an ensemble square root filter for the Lorenz96 model, Fertig et al. (2007)
compared a 4D-LETKF with 4D-Var for the same model, and Harlim and Hunt (2007) applied 4D-
LETKF to the SPEEDY model. The explicit documentation and testing in a VAR environment has been
published by Liu et al. (2008), Liu et al. (2009), Buehner et al. (2010a) and Buehner et al. (2010b); Liu
called the technique En4DVAR and Buehner En-4D-Var2. I prefer the name 4D-Ensemble-Var or 4D-
En-Var since the key feature is the 4-dimensional use of the ensemble; it also is more consistent with
the 4DEnKF terminology of Hunt et al. (2004). I reserve En-4D-Var to describe a component of the
approach in our current hybrid 4D-Var: using the ensemble to estimate the background error covariance
B at the beginning of the time window3, with the fitting of observations distributed in time done as in
4D-Var using a PF and adjoint model. Buehner et al. (2010b) presented results from a near-operational-
quality Canadian NWP system showing that 4D-En-Var is competitive with traditional 4D-Var and with
En-4D-Var.

6.1 Basic 4D-En-Var Equations

I consider a 4-dimensional best fit to all the observations in an assimilation window from start time ts
to end time te. With the addition of the underline notation to denote the extra time-dimension, and the
replacement of the climatological B by the predicted 4-dimensional P, this has identical form to the well
known incremental 3D-Var. We seek to minimise:

J (δx) =
1
2

δxT P−1
δx+

1
2

(
H
(

xb +δx
)
−yo

)T
R−1

(
H
(

xb +δx
)
−yo

)
(13)

As usual in NWP DA algorithms, we cannot actually handle (13); δx is big and P−1 is much too big
to manipulate! So we seek a representation of δx in terms of a reduced set of control variables. The
basic idea of 4D-En-Var is that δx is made up as a locally weighted linear combination of perturbation
trajectories x′i which are scaled (and perhaps transformed) differences between ensemble members and
the ensemble mean:

δxe = ∑
i

α i ◦x′i (14)

We assume the perturbations are independent, so that we can define each α i independently. To this we
can add additional terms, designed to provide scope to correct model errors which are not sampled by

2More recently Mark Buehner says he prefers to call it simply En-Var.
3Buehner et al. (2010b) called this 4D-Var-Benkf.
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Figure 6: A schematic diagram of 4D-En-Var, for comparison with figure 3. The 4D analysis is a
localised linear combination of model trajectories – it is not itself a model trajectory.

the trajectories, and generally to allow the use of hybrid methods to compensate for a small ensemble. I
just show a time constant and one time-varying term for each

δx = βe0δxe0 +βe1δxe1 +βc0δxc0 +βc1δxc1 (15)

The Met Office’s existing hybrid ensemble-4D-Var only has hybrid weights βe and βc because it does
not allow for model error. Note that the climatological term δxc0 is constant over the time-window, since
we are not using the PF model; in this aspect the new method is 3D-Var rather than 4D-Var. Probably
this means that we will want to make more use of the δxe0 term, which does allow for time evolution,
by making the ensemble larger, and βc0 smaller than in hybrid ensemble-4D-Var. Weak constraint terms
allowing for model error are included for completeness: the δxc1 term allows for a constant model error
tendency error and the ensemble term δxe1 allows for the weights α i to vary in time.

We make the key error modelling assumption that the terms are independent from each other. We can
then go on to define independent transforms (Ue0, Ue1, Uc0, Uc1) to diagonalise the control variables.
Actually, to allow for non-Gaussian errors, we currently use a nonlinear parameter transform (section
4.2). To be correct, this has to transform the total increment. We also want to do “balance aware”
localisation. So the Met Office’s initial design will use

δx = Up (βe0δxe0 +βe1δxe1 +βc0δxc0 +βc1δxc1) (16)

where the δxe0 etc. terms are in transformed parameter space.

These transforms are constructed in the normal VAR way, so the transformed control variables are
independent with unit variance. They are combined into a single control vector

v =
(

vc0,
(
vα0

i
)

i=1,K , vc1,
(
vα1

i
)

i=1,K

)
(17)

This gives us a new penalty function to replace (13):

J (v) =
1
2

vT v+
1
2

(
H
(

xb +δx
)
−yo

)T
R−1

(
H
(

xb +δx
)
−yo

)
(18)

12 ECMWF Seminar on Data assimilation for atmosphere and ocean, 6 - 9 September 2011



LORENC, A C: DEVELOPMENTS OF VARIATIONAL DATA ASSIMILATION

6.2 Prospects

Above we described a smoother, giving a 4-dimensional δx over the time-window. Work is needed to
think more carefully about how to add this to the full model and start the next forecast, i.e. how to
convert the smoother solution to an ongoing filter, taking account also of the considerations discussed
in section 5.2. Plans are also being developed to apply the same 4D-En-Var algorithm (using the same
ensemble perturbations) to each ensemble member, replacing the localised ETKF in the current MO-
GREPS system.

The 4D-Ensemble-Var approach replaces the costly, sequential, PF and adjoint model integrations by the
use of pre-calculated perturbation trajectories, which have to be input and stored. Current indications
are that, even allowing for this, it can be made at least as fast as 4D-Var on our current computer (IBM
power6), while results such as Buehner et al. (2010b) give the expectation that it will be comparable
in quality. The new algorithm has the advantage of being highly scalable, so it is more likely to work
efficiently at higher resolution on future computers. It also removes the need for an adjoint model. This
is otherwise a worry since independent developments of efficient NWP models for future computers
may well lead to a radical restructuring and different grid – recoding of an adjoint for such a model is
not an attractive prospect.
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Gustafsson N, Thorsteinsson S, Stengel M, Hólm E. 2011. Use of a nonlinear pseudo-relative humidity
variable in a multivariate formulation of moisture analysis. Q. J. R. Meteorol. Soc. 137(657): 1004–
1018, doi:10.1002/qj.813, URL http://dx.doi.org/10.1002/qj.813.

Harlim J, Hunt BR. 2007. Four-dimensional local ensemble transform Kalman filter: numerical exper-
iments with a global circulation model. Tellus A 59(5): 731–748, doi:{10.1111/j.1600-0870.2007.
00255.x}.

ECMWF Seminar on Data assimilation for atmosphere and ocean, 6 - 9 September 2011 13

http://dx.doi.org/10.1002/qj.600
http://dx.doi.org/10.1002/qj.600
http://research.metoffice.gov.uk/research/nwp/publications/papers/technical_reports
http://research.metoffice.gov.uk/research/nwp/publications/papers/technical_reports
http://dx.doi.org/10.1002/qj.813


LORENC, A C: DEVELOPMENTS OF VARIATIONAL DATA ASSIMILATION
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