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Abstract 

The Data Assimilation scalability issues on today’s computer architectures are described using the 4-
dimensional variational assimilation system (4D-Var) at ECMWF as an example. The scalability issues that 
affect the ECMWF assimilation system are to a large extend representative for the operational data assimilation 
systems used at other NWP centres. It is discussed how the future computer architectures are most likely to 
look. The high performance computers today serve a large variety of users, so numerical weather prediction is 
now only a small fraction of the user community. The use of ‘off-the-shelf’ hardware to build high performance 
computers will continue for the foreseeable future. The challenge is to adapt the data assimilation systems to the 
computers that are available. It will be addressed if we will be able to use future parallel computers efficiently 
for data assimilation, and if we can modify our data assimilation methods to utilize future computer 
architectures better.  

1. Introduction 

An increasingly important driver for the future developments of our data assimilation systems is the 
evolution of supercomputer architectures. The main topic of this paper is to discuss data assimilation 
on future computer architectures. It is now clear that any significant increase of performance of our 
future systems the next decade will come from increased parallelism, as the future increase in 
computing performance will not come from increased speed of individual cores, but rather from an 
increase in the number of cores on individual chips. A recent thorough analysis of the incremental 4D-
Var system at ECMWF has indicated that although considerable effort has been (and is) dedicated to 
the optimisation and parallelisation of its current implementation, there is limited scope for additional 
tangible gains in scalability to be achieved without a profound revision of the algorithms. Therefore it 
is natural that the computational aspects of the most viable alternative method, the Ensemble Kalman 
Filter, also are discussed in this paper. 

The last decade has seen very substantial improvement in the quality of analyses and short-range 
forecasts due to improved forecast modelling and data assimilation techniques and improved 
observations, especially the space-based component of the global observing system (Simmons and 
Hollingsworth 2002, Thépaut and Andersson 2010, Andersson and Thépaut 2010). Data assimilation 
is a central component of any NWP system, and key to continued improvement of forecast skill.  

ECMWF has invested significantly in the 4D-Var technique and pioneered its developments and 
implementation in an operational context, putting ECMWF in a world-leading position and paving the 
way for many other NWP centres. In addition to requiring considerable initial investment, 4D-Var 
faces two main challenges. First, as a deterministic data assimilation technique, it does not provide an 
estimation of analysis and forecast uncertainty, and is limited in its ability to cycle flow-dependent 
error covariances. Second, the scalability of 4D-Var is limited due to the sequential nature of its 
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algorithm, which makes it unsuitable in its current formulation for future high performance computer 
(HPC) architectures. In this paper we discuss how to modify the data assimilation system to make 
better use of the next generations of HPC architectures.   

Ensemble Kalman Filtering (EnKF) techniques have recently received a lot of attention in the NWP 
community, because of their simplicity and their intrinsically scalable nature. They provide fully 
flow-dependent error covariances. However, these covariances are approximate and noisy, due to the 
limited affordable size of the ensemble. The competitiveness of the EnKF in a real-size context with a 
full global observing system remains to be demonstrated. 

Hybrid techniques, combining 4D-Var with an ensemble component (ensemble of low resolution 4D-
Var assimilations (EDA) or EnKF) seem to be the most attractive way to progress and benefit from 
the two approaches. At ECMWF we envisage a scenario which will require a profound modification 
of the 4D-Var algorithm to improve its scalability, accompanied with a radical optimisation of the 
early delivery analyses from which the operational forecasts are initialised.  

The 4D-Var technique provides the flexibility required to extract information from a wide variety of 
observations, including those that are only indirectly linked with the model/analysis variables. It will 
remain a vital consideration for the data assimilation system of the future to take full advantage of the 
information obtained from high resolution conventional data and the multitude of space-based 
observing system technologies.  

The analyses produced through data assimilation have several important uses at NWP centres. These 
several application areas impose different requirements on the design of the future earth-system data 
assimilation system that are partly overlapping and partly conflicting: improved analysis quality 
through the use of higher resolutions and longer assimilation windows, flow-dependent background 
errors, reliable estimation of analysis and forecast accuracy, increased number of analysed fields, and 
the degree of coupling to ocean and land-surface analyses. 

2. The high performance computer system at ECMWF 

The ECMWF High Performance System (HPC) consists at the moment of two identical IBM Power6 
systems with 9200 cores each. This system is in the process of being upgraded to two identical IBM 
Power7 systems with 24400 cores each. Each core consists of two threads on the IBM Power6, and 
two to four threads on the IBM Power7. 

It is interesting to look at the evolution of ECMWF’s high performance computer system since the 
first system, a Cray-1A with one processor, was installed in 1978. Table 1 shows the performance 
increase and increase in the various system components during the last 30 years.  The sustained 
performance per CPU has only increased by a factor of 24, primarily because the clock speed only has 
gone up by a factor of 60. The CRAY-1A processor was an advanced highly specialized CPU, 
produced in small quantities for NWP, fluid dynamics and intelligence applications. Today’s 
supercomputers use commodity processors that are cost-effective and large volume off-the-shelf 
products with a diverse user base.  
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Specification Cray-1A IBM Power6 
System 

Approx. Ratio 

Year installed 1978 2009  
Architecture Vector Processor Cluster of scalar 

CPUs 
 

Number of CPUs 1 ~9,000 9,000:1 
Clock Speed 12.5 nsec (80MHz) 0.21 nsec (4.7 GHz) 60:1 
Peak performance per CPU 160 MFLOPS 18.8 GFLOPS 120:1 
Sustained performance per 
CPU 

~50 MFLOPS ~1.18 GFLOPS 24:1 

Peak performance per system 160 MFLOPS ~320 TFLOPS 2,000,000:1 
Sustained performance of 
operational assimilation 
system 

~50 MFLOPS ~20 TFLOPS 400,000:1 

Memory 8 Mbytes ~40 TBytes 5,000,000:1 
Disk Space 2.5 GBytes ~1.2 PBytes 500,000:1 

 
Table 1. A comparison of ECMWF's first supercomputer (Cray-1A) with one cluster of the present 
(2009-12) dual system IBM Power6.    
Source http://www.ecmwf.int/services/computing/overview/supercomputer_history.html  
 

 
Figure 1: ECMWF’s sustained historical supercomputer performance growth and archiving 
growth from 1979 until today, including the prediction for the next generation system. The 
vertical axes are logarithmic. The left axis is sustained Teraflops, applicable for the bars. The 
bars show the name of the supercomputer system. The beige line shows the average exponential 
growth of sustained computer performance over the period (57% p.a.). The right axis is the unit 
for the ECMWF DHS (Data Handling System) archive size in PetaBytes, represented by the blue 
curve. (Source ECMWF:  http://www.ecmwf.int/services/computing)  

http://www.ecmwf.int/services/computing/overview/supercomputer_history.html
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The relative sophistication of processors have been reduced with time, so the primary reason for the 
overall increased performance of super computers over the years is due to the added parallelism by 
increasing the number of CPU’s (processors or cores) from one to more than 9000.   

The amount of memory and disk space has increased by a factor that is very comparable to the overall 
sustained computational performance increase. This is because the storage systems are using the chip 
technologies that are responsible for the CPU related improvements. This relationship is evident from 
Fig. 1 that shows the clear link between ECMWF’s archive size and the sustained supercomputer 
performance.  

Fig. 1 shows the almost constant exponential growth of sustained computer power during the last 30 
years at ECMWF. It is a manifestation of Moore’s law that has ensured that ECMWF has been able to 
achieve this performance (and archive size) increase for only a small annual increase in real financial 
cost. A similar historical evolution has been seen at other NWP centres. The same degree of 
exponential growth has been achieved for the performance of the top 500 super computers (both for 
the top, the median, and the bottom) over the last 20 years (see http://www.top500.org for further 
details).  

3. The operational data assimilation system at ECMWF 

The increase in sustainable supercomputer performance has over the years primarily been used to 
increase the horizontal and vertical model resolution. But it has also allowed ECMWF to introduce 
more advanced model parameterizations and use more advanced data assimilation methods. The time 
spent on running the operational analysis and forecast has been kept more or less the same over the 
last 30 years. Today, in 2012, the main application is the operational forecast, the 4D-Var assimilation 
system, and the Ensemble Prediction System (EPS). For this we are using the IFS (Integrated Forecast 
System, developed by ECMWF and Météo-France. See http://www.ecmwf.int/research/ifsdocs). The 
operational assimilation is performed twice a day using a 12 hour 4D-Var T1279 (16 km horizontal 
grid) outer loop, and T159/T255 inner loops (Courtier et al. 1994). This is followed by a 10-day 
T1279L91 forecast. In 2010 an Ensemble of Data Assimilations (EDA) was implemented as part of 
the operational system to provide flow-dependent estimates of short-range forecasts (Isaksen et al. 
2010; Bonavita et al. 2011; Bonavita 2012 in these proceedings). It is using a 10 member 4D-Var with 
T399 outer loop and T95 and T159 inner loops. The EPS is using 50 members at T639L62 up to day 
10, and T399L62 from day 11-15. Twice weekly the EPS is extended to 32 days, to provide monthly 
forecasts. 

Deborah Salmond from ECMWF has performed extensive evaluation of the scalability of our 
assimilation system on the present IBM Power6 computer. Some of these results will be presented 
here. Fig. 2 shows the scalability of the operational T1279 forecast model and the 4D-Var analysis on 
ECMWF’s present IBM Power6 computer. The plots show the sustained performance, based on the 
wall clock time spent to perform the computations, for a range of threads (two threads per core on 
IBM Power6) in the range from 2000 to 6000. The operational assimilation system is using 3072 
threads. The forecast model (red curve) scales reasonably well compared to the ideal scaling (blue 
curve). The 4D-Var (black curve) on the other hand shows rather poor scaling characteristics going 
from 2000 to 6000 threads. The ECMWF assimilation system is using the incremental formulation 
(Courtier et al. 1994) of 4D-Var, where the so-called trajectory step compares observations against a  

http://www.top500.org/
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Figure 2: Scalability of the ECMWF forecast model and 4D-Var assimilation system. The upper 
panel include the trajectory steps (green curves). The bottom panel include the minimization 
steps. Speed up is shown as function of number of threads. The ideal scaling curve is also shown. 
Courtesy Deborah Salmond (ECMWF). 
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T1279 background forecast, followed by a minimization at either T159 or T255 resolution. It is more 
cost effective to use the incremental formulation where the expensive minimization steps are done at 
lower resolution. On Fig. 2a the two green curves represents the trajectory steps. The least scalable 
trajectory step (traj_0) runs a T1279 forecast and compare it against all available observations (of the 
order 150 million for a 12 hour period), whereas the other trajectory tasks (Traj_1 and Traj_2) only 
compare model forecasts against the active observations (of the order 12 million for a 12 hour period). 
The purple curves on fig. 2b present the scalability of the minimisation steps. The T159 minimisation 
(purple curve labelled Min_159) is less scalable than the T255 (purple curve labelled Min_255). The 
reason for the difference in scalability for the various steps is primarily due to the difference in the 
number of grid columns and due to the extra IO and communication for the handling of observations. 
The T1279 has approximately 2,000,000 grid columns, compared to the 89,000 for T255 and 36,000 
for T159. So for a fixed number of cores there is much less work per core for the lower resolution 
models. The amount of communication is also reduced, but not proportionally as much. Studies of the 
scalability of the forecast model at T159 resolution (not shown) found that it is even less scalable than 
the T159 analysis step. This is because the linear adjoint and tangent model is more compute intensive 
than the non-linear model. These aspects will be discussed in more detail in Section 7. 

4. Future computer architectures – hardware issues 

In the previous Section it was shown how the major change over the last 30 years of supercomputer 
design has been the increase in number of cores. We will now discuss how this may change over the 
next decade. It is evident that the trend towards off-the-shelf hardware will continue, with a mass 
market for applications that are not exceedingly compute intensive. Most applications will be able to 
run on one multi-core chip, or are embarrassingly parallel. The focus on power consumption and 
cooling costs means clock speed and power comsumption per chip will remain more or less the same. 
But there is no evidence that the expontial growth in computer performance will stop. Moore’s law of 
a doubling in the number of transisters per chip every second year is continuing to hold true. Fig. 3 
shows how the increase in chip performance during the last 40 years can be contributed to clock speed 
(frequency), and to the number of cores per chip. For the period 1970-2003 the improved performance 
was primarily obtained by increasing  the clock frequency. But since 2003 the clock speed has not 
increased. The increased performance of the chips has been obtained by an increase in the number of 
cores on each chip. The main reason for this is that power cost increase significantly with higher 
frequency. In addition to increased power comsumption, it also cause increased cost of cooling the 
chips. It is much more efficient use of power to move to a multi-core chip concept, rather than 
increasing the clock speed. The chip design plans for all the major players in the field shows that this 
trend will continue. It is expected that the number of cores per chip will double each year for the next 
decade, with the clock speed staying unchanged or slightly reduced. This has significant implications 
for the design and coding of the future data assimilation systems. Where we now have of the order ten 
thousand cores, we will very likely see systems for operational NWP with more than one million 
cores within a decade. 



ISAKSEN, L.: DATA ASSIMILATION ON FUTURE COMPUTER ARCHITECTURES 

ECMWF Seminar on Data assimilation for atmosphere and ocean, 6 - 9 September 2011 307 

 
Figure 3: The evolution of computer chips from 1970 until 2009. The curves represent trends of:  
number of transistors [in thousands] (blue diamonds), clock speed/frequency [mHz] (red 
squares), power consumption per chip [W] (yellow triangles), and number of cores per chip 
(purple circles).  Data from K. Olukotun, L. Hammond, H. Sutter, B. Smith, C. Batten, and K. 
Asanoviç. Graphics by Jack Dongarra et al. 2011: Linear Algebra Libraries for High-
Performance Computing: Scientific Computing with Multicore and Accelerators. Presented at 
SC11, Seattle. 

We will give a few examples of top of the range super computers. The number one on TOP500 in 
2012 is the Japanese K-computer with 10 PFLOPS peak performance. It is a $1.3 billion national 
funded initiative. The computer consists of 80,000 Fujitsu SPARC64 VIIIfx CPUs. A significant 
amount of the cost is for the powerful interconnect that ensures this machine is able to run real 
applications effectively using a large fraction of the system on a single problem.  

For petascale computing the interconnect is a very important and potentially expensive component of 
the future super computers. It is a question which type of topology can scale up to 100,000 cores or 
more. There are three types of interconnect: cross bar, fat-tree/multi stage, or a mesh/torus. The 
mesh/torus approach is the most viable solution for systems with more than 10,000 cores. 
Improvement of the performance, the operability and availability of mesh/torus topology is the 
biggest challenge.   

On the processor design side there is presently debates going on whether future systems will be based 
on more general purpose CPUs or special purpose GPUs (Graphical Processor Units). The GPUs have 
been designed by companies like NVIDIA for graphics cards used on workstations and PCs. 
NVIDIA’s Fermi chip is the first to support high performance computing. They have formed 
partnerships with Cray and IBM on developing GPU based HPC systems. Number 2 and 4 super 
computer systems on TOP500 is of that type. Other chip manufacturers like AMD/ATI and Intel are 
also developing and producing GPU based chips for high performance systems.  

Fig. 4 shows schematically the comparison of CPUs versus GPUs.  
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Figure 4: Comparison of state-of-the-art CPU and GPU chips. Source: M. Govett et al. 2010: 
Using GPUs to Run Weather Prediction Models, 14th Workshop on Use of High Performance 
Computing in Meteorology. 

 

The main difference between CPUs and GPUs is that the GPUs have many more cores per chip. This 
results in increased performance for the same power consumption. The GPU performance is not 
increased proportionally to the increase in number of cores, because the clock speed in lower and the 
chip has a reduced and leaner functionality. But GPU based systems would be favoured over CPU 
based system, if a performance per power unit metric is used. As an example of a next generation 
system for NWP applications, the GPU camp compare the CPU based USA Department Of Energy 
Jaguar system (2.3 PetaFlops peak performance, 250,000 CPUs, 284 cabinets, 7-10 MW power 
consumption, price of the order $100 million) versus an Equivalent GPU System (2.3 PetaFlops 
peak performance, 2000 Fermi GPUs, 20 cabinets, 1.0 MW power consumption, price approximately 
$10 million). The GPU will be more reliable because it consists of only 2000 GPUs versus 250,000 
CPUs. The GPU camp argues that large CPU systems (>100,000 cores) are unrealistic for operational 
weather forecasting due to several issues: power consumption, cooling, reliability, and cost. But in 
reality it is not so straightforward. GPUs are more difficult to program (as will be addressed in 
Section 5), and CPUs are gradually becoming more like GPUs, with increased number of cores per 
chips. The likely scenario is that CPUs and GPUs melt into one technology where the general purpose 
benefit of CPUs is maintained together with exploitation of the multi core GPU benefit (like increased 
performance per power unit). 
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5. Future computer architectures – software issues 

GCUs are special purpose build chips that people now are trying to use for more general purpose 
applications like NWP. The Fortran GPU Compilers still lacks generality: they do not support all 
Fortran language constructs, so it is required to use lower level languages, like CUDA.  It is also 
necessary to use an extensive set of parallelization directives to guide compiler analysis and 
optimization. This means it requires additional effort to use GPUs. It has been done at NOAA, where 
a complete NWP model has been rewritten using CUDA. It is expected to become easier with time to 
use GPUs, if there is a sufficient user market for GPU based computers, because then computer 
vendors will have an incentive to develop better and easier usable compilers. 

The trend towards more cores per chip will increase the peak performance of chips, but the memory 
bandwidth and I/O bandwidth will not improve as quickly. Technology improvements may help, but 
the costs of similarly fast and large volume memory (and I/O) may become unacceptably costly. The 
trend is decreasing bytes/flop ratios, so locality counts. Packaging technology, like I/O switching 
costs becomes more of an issue - the relative amount of power needed to move data will increase. 
Flop metric promises to be an even poorer predictor of sustained performance in the future than it is 
now. So it will be more difficult to use the next generation computers. Few applications will scale to 
exascale with their current structure due to things like: lack of sufficient parallelism; load imbalance; 
lack of data reuse (too few computations per memory access); use of algorithms and data 
decompositions that require extensive communication. The next generation computer will be limited 
by bottlenecks in memory, communications, and I/O bandwidths. This not so far future for high 
performance computing was summarized well by Don Grice (2010, ECMWF HPC Workshop). He 
concluded that the fundamental programming style is not likely to change much: multi-threaded ‘MPI 
tasks’ will be the norm, new languages are emerging to help with extreme scale and a shared memory 
model at the task level will still exist. The trends will be that the amount of threading will increase; 
‘more science’ will be a way to use CPU cycles. Optimization points will change – computing is 
‘free’, so e.g. more advanced physical parameterizations can be implemented at no extra real time 
cost. 

Today the scaling issues in NWP are primarily due to static and dynamic load imbalance, e.g. 
convection is more likely in the tropics, leading to imbalance. Jitter in the interconnect also leads to 
hick-up delays in communication. A problem that increases with the number of processors involved in 
the communication. MPI communications latency, choice of topology, openMP overheads, I/O and 
slow sequential shell scripts are all important issues today.  

There are many unknown regarding the problems we can expect related to scaling to 100,000 - 1 
million cores. It is a question if we can continue to use MPI and OpenMP. Jitter problems will have to 
be resolved. Overlapping of computations and communications may be the solution to the reduction in 
communication speed compared to the speed of cores. There is a need for new computer language 
concepts that allows the user to guide the distribution of data, e.g. Fortran 2008 co-arrays or 
partitioned global address space (PGAS) languages. Finally there will be an increased need for tools 
(debuggers, profilers) that work reliably and fast at high core counts, and work with large 
applications. 
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6. Assimilation algorithms – their strengths and weaknesses 

We will restrict the discussion here to the main assimilation technique, 4D-Var, widely used 
operationally in the NWP community, and the Ensemble Kalman Filter that has been the focus of 
much recent active research, plus hybrid techniques that combine the deterministic and ensemble 
components. Other techniques (e.g particle filters) exist that potentially offer many attractive 
properties but are not considered practical within this decade. These will therefore not being discussed 
here. 

6.1. 4D-Var 

4D-Variational data assimilation approaches (Lewis and Derber, 1985; Le Dimet and Talagrand, 
1986) have been pioneered at ECMWF (Courtier and Talagrand 1987; Courtier et al. 1994) in the late 
eighties, and drove the development of the Integrated Forecasting System of the Centre. This 
assimilation technique was successfully implemented at ECMWF in 1997 (Rabier et al. 2000) and has 
now been used with great success at several operational NWP Centres for a number of years. The 
principle of 4D-Var can be summarised as follows: given all the information (observations and their 
associated errors, background and its associated error, atmospheric model, etc.) available over a 
period of time (assimilation window), 4D-Var looks for the model trajectory which best fits the 
background and the observations over this assimilation window. This is done through the 
minimization of a cost function measuring the misfit between the atmospheric state and the 
observational and background information. A key feature of 4D-Var is the flow dependent influence 
of observations in space and time controlled by the tangent-linear model dynamics (Thépaut et al. 
1996).   The strengths and weaknesses of 4D-Var have been widely discussed in the literature (e.g. 
Lorenc 2003) and will not be discussed here.   

In the context of this paper it should be mentioned the computational cost of 4D-Var is high, as it 
requires many integrations of the tangent linear and adjoint models during the minimisation of the 
cost function. This is fundamentally a sequential process. The incremental technique, using a 
simplified model in the inner loop (simple physics, low resolution) allows the cost to be reduced. 
However, the inner modules of the incremental 4D-Var remain the least scalable parts of the scheme, 
mainly due to the lower resolution applied. The cost and scalability issues of 4D-Var are discussed at 
length in Section 7. 

6.2. Ensemble Kalman Filter 

The Ensemble Kalman Filter (EnKF) has been developed from the mid-90s as a Monte Carlo 
approximation to the Kalman Filter (Evensen 1994; Burgers et al. 1998; Houtekamer and Mitchell 
1998). These first implementations, known as Stochastic EnKF, were based on the concept of 
simulating all possible sources of uncertainty in the data assimilation system. This essentially implies 
running an ensemble of data assimilation systems where random perturbations drawn from their 
expected error statistics are added to the observations. In this way the estimated analysis covariances 
asymptotically match the correct values computed by the Kalman filter update equations. Another 
possibility is to compute a Kalman filter update of the ensemble mean and the analysis covariance and 
then construct the ensemble members from a ‘square root’ of the estimated analysis covariance 
(Anderson 2001; Whitaker and Hamill 2002; Tippet et al. 2003 for a review) This Ensemble Square 
Root Filter (EnSRF), or Deterministic EnKF, presents advantages for small size ensembles due to the 
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elimination of sampling error associated with the perturbed observations In order to be 
computationally efficient, the Deterministic EnKF assimilates observations sequentially, thus 
implicitly assuming their errors to be statistically independent. This assumption is not needed in the 
more recent version of the EnKF known as Local Ensemble Transform Kalman Filter (LETKF, Hunt 
et al. 2007), where the analysis is computed independently for each grid point using all the 
observations in a predefined local volume. The excellent scalability of the scheme is due to the fact 
that the analysis is effectively performed in the error subspace spanned by the ensemble perturbations.  

The increasing popularity of the EnKF in geophysical NWP applications is based on both practical 
and theoretical reasons. Compared to a variational algorithm, the EnKF is considerably simpler to 
code and maintain. This is because the EnKF algorithm is essentially independent of the prognostic 
model used to cycle the ensemble and does not need perturbation and adjoint versions of the model 
and observation operators. The EnKF algorithm is also intrinsically parallel, especially in the LETKF 
flavour, and thus well suited to massively parallel computer architectures.  

From a theoretical perspective both the advantages and disadvantages of the EnKF are essentially a 
consequence of it being a reduced rank approximation of the Kalman Filter. This is discussed in detail 
in the papers referenced above, and by Bonavita (2012) and Whitaker (2012) in these proceedings. 

6.3. Hybrid methods  

It has long been recognized that one of the main limitations of strong-constraint 4D-Var is its inability 
to propagate the error estimates of the state beyond the time span of the analysis window.  

It has been shown (Fisher et al., 2005) that if the assimilation interval is made sufficiently long (3-5 
days), the weak constraint formulation of 4D-Var produces at the end of the assimilation interval an 
identical analysis to that produced by an extended Kalman filter that has been running indefinitely, i.e. 
it will implicitly incorporate the error evolution update of the Kalman filter. This is discussed by 
Fisher and Auvinen (2012) in these proceedings. 

At the other end of the spectrum, the EnKF has been demonstrated as a viable low-rank 
approximation to the extended Kalman Filter. The EnKF explicitly propagates the error covariance 
estimates. However the sampled B matrix of the EnKF, although fully flow-dependent, suffers from 
sampling errors and rank-deficiency issues because of the comparatively small size of the ensemble 
with respect to the local dimension of the error space. On the contrary, 4D-Var allows the initial B 
matrix to be high rank because error covariances are propagated implicitly through the tangent linear 
and adjoint of the forecast model. This suggests the idea of a hybrid system where background error 
estimates from an EnKF (or, more generally, an ensemble of data assimilations, EDA) are used (alone 
or in combination with a climatological B) for the construction of a regularised flow-dependent B 
matrix to be used in the variational analysis. This approach has been first proposed by Hamill and 
Snyder (2000) in the EnKF - 3D-Var framework and successively extended to hybrid Ensemble - 4D-
Var configurations (see Buehner et al. 2010a and references therein).  

Restricting our attention to Ensemble – 4D-Var hybrids, there are two fundamentally different 
possibilities. One may use the ensemble sample covariance matrix at the start of the 4D-Var 
assimilation window and let the variational algorithm implicitly evolve the initial covariances through 
the tangent linear and adjoint model; alternatively one can use the ensemble covariances throughout 
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the assimilation window, without the need of a tangent linear and adjoint forecast models (this 
approach is known as En-4D-Var, see Buehner et al. 2010a).  

The hybrid data assimilation system under development at ECMWF aims to use ensemble information 
to model the background error covariance matrix B at the start of the 4D-Var window. This 
configuration is being pursued because: a) it is a gradual evolution from the previous system which 
only made use of a static initial B computed from a climatology of EDA perturbations; b) ECMWF 
has already developed a tangent-linear and adjoint version of the model, including a simplified 
physics package;  c) it can avoid some of the difficulties involved in the spatio-temporal localization 
of the ensemble covariances required in En-4D-Var; d) recent results (Buehner et al. 2010b) show this 
method to provide results of comparable or slightly better quality than En-4D-Var. 

Another distinctive feature of the ECMWF approach is that the ensemble providing the flow-
dependent covariance estimates is not an EnKF but an Ensemble of Data Assimilations (EDA), i.e. a 
system of N (N=10 at the time of writing) independent, reduced resolution, 4D-Var assimilation 
cycles which differ by using randomly perturbed observations, sea-surface temperature fields and 
model physics. If the perturbations are drawn from the true distributions of observation and model 
error, then the spread of the EDA about the control (unperturbed) analysis will be representative of the 
analysis error of the 4D-Var system (Isaksen et al. 2010). This result is valid for weakly non-linear 
systems and is based on the assumption that the effective Kalman gain matrix used in the perturbed 
runs is equal to the one used in the unperturbed, reference system. In other words, the perturbed 
analysis should be as close as practically and computationally affordable to the reference analysis, in 
order for their perturbations to simulate the errors of the reference analysis system. 

EDA or EnKF perturbations can also be used for the estimation of the B matrix correlation structures. 
This can be achieved in more than one way. In a simplified experimental configuration Hamill and 
Snyder, 2000, proposed a hybrid EnKF - 3D-Var scheme where the B matrix is a linear combination 
of the static B used in the variational scheme and a flow-dependent B sampled from the EnKF. In 
state of the art, operational implementations of 3-4D-Var the B matrix is never actually constructed, 
but it is implicitly defined by the operators that perform the transformation from model variables to 
the control variables (Fisher, 2003). In this framework, it is convenient to do the combination of the 
two covariance matrices through augmentation of the control vector (alpha control variable, Lorenc, 
2003). Barker and Clayton (2012, in these proceedings) discuss this further. 

6.4. Review of current/future evolution at other NWP Centres 

At present, all operational global deterministic forecasting systems use a variational data assimilation 
algorithm (3D-Var or 4D-Var), except for one centre (HMC, Russia) which uses an OI algorithm. In 
addition to the analysis for the deterministic forecast, several centres (including Météo-France and 
ECMWF) have started to use ensembles of data assimilations to provide analysis uncertainty 
estimates and to generate all or some of the initial perturbations for their ensemble prediction system. 
One centre, CMC (Canada), runs a distinct ensemble data assimilation system for initialising the EPS. 

Other operational centres share ECMWF’s concern regarding scalability of the data assimilation 
system on future massively parallel computer systems. EnKF is a very scalable method. However, the 
scalability aspects have to be balanced against the requirements for analyses to be of equal or better 
quality than those produced by current operational systems. This has not yet been achieved with an 
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EnKF. It is not yet clear that the significant scientific challenges involved in applying EnKF methods 
to the current and future observing system (in particular, the use of very high observation densities 
with a predominance of vertically non-local radiance data) can be overcome.  

7. Scalability and computational cost 

7.1. Comparing Forecasts and 4D-Var Analyses 

We now make a simplified schematic comparison of the scalability of the forecast versus the 4D-Var 
analysis. The cost of the tangent linear and adjoint model integrations is the dominant cost in 4D-Var, 
and is likely to remain dominant for the next decade.  The tangent linear and adjoint models are 
parallelised in exactly the same way as the forecast model, and their scaling properties are identical. 
The difference in scalability between the forecast and 4D-Var is therefore due to the fact that 4D-Var 
performs a larger number of sequential timesteps at a lower spatial resolution. 

The IFS model is parallelised using two-dimensional distributions in both spectral and grid spaces. 
The current ECMWF operational system run on 3072 threads, as discussed in Section 3, so each 
processor is responsible for nearly 700 grid columns for the T1279 forecast and for the 4D-Var 
trajectory calculations. The minimization is run at lower resolution at the same number of processors. 
For the T255 minimisations this results in around 29 columns per thread, and for the T159 
minimisation 12 columns per thread.  

The computational work required to process a single grid column for a single timestep is the same for 
all horizontal resolutions of model.  Hence, the minimum number of columns that can be assigned to a 
processor before communications costs start to dominate is approximately the same for all resolutions 
of model. If all resolutions are run with as many processors as can be used efficiently, the wall-clock 
time required to integrate the model for one timestep becomes independent of the resolution of the 
model. That is, we have perfect weak scaling: the work per processor per timestep is a resolution-
independent constant. Given this observation, we can compare different tasks (e.g. the forecast and 
the analysis) by examining how many sequential timesteps are required to achieve them. It should be 
noted that the current operational system is not run in this way. The forecast currently uses 
considerably more wall-clock time than would be required if it were parallelised to the same extent as 
the analysis. 

Let us consider first the deterministic ten-day forecast that is run with a 10-minute timestep. The 
number of timesteps required for a ten-day forecast is 1440 (10*24*60/10). 

The current 12-hour 4D-Var system performs four T1279 outer-loop integrations of length 12 hours, 
also using a timestep of 10 minutes. The number of timesteps required for the outer loops are 288 
(4*12*60/10). 

The T159/T255 inner loops use a half-hour timestep. There are three minimisations, which together 
perform approximately 100 iterations of minimisation. Each iteration performs a 12-hour tangent 
linear integration followed by a 12-hour adjoint integration. The computational cost is dominated by 
the cost of the model integrations, so that it is meaningful to characterise the cost of the inner loops in 
terms of the number of timesteps of integration. 
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The total number of timesteps required to perform the inner loops is 4800 (100*2*12*60/30). 

We see that the current 12-hour 4D-Var system requires three times more timesteps than the ten-day 
forecast. It is worth noting that the worst-case scenario is that 12-hour 4D-Var requires a wall-clock 
time equivalent to a few tens of days of high-resolution model integration, assuming that both use 
similar ratios of gridpoints to processors.  

The primary concern for the future is that the timestep length will decrease as model and analysis 
resolution increases. This will require more timesteps to be performed. In the case of the forecast 
model, this increase can be absorbed by reducing the number of grid columns per processor. At least 
an order of magnitude decrease in timestep length (i.e. an order of magnitude increase in resolution) 
can be accommodated before the forecast model starts to run out of parallelism. 

The situation for the 4D-Var minimization is different, since it is not possible to further decrease the 
number of grid columns assigned to each processor, because the limit of scalability is reached around 
20 grid columns per processor on today’s computers. If we do nothing to address the problem, we can 
expect the wall-clock time required to perform a 4D-Var analysis to increase in line with the reduction 
in timestep length, while the wall-clock time required for the forecast can stay the same. This process 
reaches a limit when the forecast and 4D-Var use similar ratios of grid columns to processors. At this 
point, the scaling properties of the model will be similar to those of 4D-Var, and the cost of 4D-Var 
relative to that of the forecast will not deteriorate further. 

Since an order of magnitude increase in the wall-clock time required to run 4D-Var is unacceptable, it 
will be necessary to drastically reduce the number of sequential timesteps required to perform an 
analysis. We believe that this is achievable through a combination of algorithmic changes (as will be 
discussed in section 7.2), and by reducing the number of timesteps in the time-critical part of the 
analysis (as will be discussed in section 8.3. 

7.2. Parallelisation over sub-windows.  

Parallelisation by dividing the inner loops into sub-windows (see Fisher et al. 2011, Fisher and 
Auvinen 2012 in these proceedings) has the potential to significantly reduce the sequential cost of 4D-
Var. Specifically, in the scalability computation we may replace the length of the analysis window (12 
hours) by the length of the sub-window. For example, with a three hour sub-window, the inner loop 
cost is reduced, from the 4800 timesteps for a 12 hour window, to 1200 (4800/4) timesteps. 

Note also that by parallelising over sub-windows, the sequential cost of 4D-Var becomes independent 
of the total length of the analysis window. There is no impact on wall-clock time of increasing the 
length of the analysis window, provided the number of iterations required to minimise the cost 
function stays constant. 

It should be stressed that the arguments presented above are simplified. The estimates assume that the 
numbers of iterations and the total cost per iteration for weak constraint 4D-Var remain similar to 
those of strong-constraint 4D-Var. This is unlikely to be the case, since exploiting the parallelism of 
weak constraint 4D-Var may require us to adopt algorithms that require more (or more expensive) 
iterations. 
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7.3. Scaling properties and computational cost of an EnKF system 

The Ensemble Kalman Filter is often presented as a data assimilation algorithm that does not suffer 
from the scaling problems associated with 4D-Var. This is true at least from a theoretical stand-point 
for certain implementations like the LETKF. In the LETKF, each point on the computational grid is 
analysed independently of each other, leading to a very high number of independent pieces of work. 
At the resolution of the current ECMWF EDA system (T399) this implies around 2×107 points: an 
order of magnitude more points than the number of cores envisaged during the next decade. 
Propagation of the covariance matrix is done through running an ensemble of forecasts, which also 
will be very scalable.  

However, from a practical implementation viewpoint there may be scaling issues. To analyze a point 
in state space the analysis system needs access to all the “local” observations. If the number of cores 
approaches the number of state locations there will be a high degree of overlap between the “local” 
observations needed by one task and those needed by tasks analyzing adjacent areas. The distribution 
of the observations may become a bottle neck. The severity of this issue is crucially dependent on the 
way the localization is done and to what extent different cores share the same memory. Also, the cost 
of reading and writing the ensemble states may reduce the scalability significantly. 

The total computational cost of an EnKF is decided by the resolution of the ensemble members, the 
size of the ensemble and the number of observations assimilated. In general running the ensemble of 
forecasts constitutes the dominant part of the computational cost of the EnKF. It is then clear that the 
total cost of the EnKF run at a specified resolution is broadly comparable to the cost of running a 4D-
Var with the innermost loop at the same spatial resolution and a number of iterations similar to the 
EnKF ensemble size, the only difference being that the EnKF makes use of the full model while 4D-
Var uses its tangent linear and adjoint implementations. It should be noted, however, that while the 
EnKF forecasts can be run independently and in parallel, the inner loop iterations of 4D-Var are 
intrinsically sequential. 

7.4. Secondary scalability issues for data assimilation 

The principal scaling issues for 4D-Var and EnKF have been outlined above. There are also 
secondary, more technical, scaling issues that affect all data assimilation systems. One such issue 
concerns computations in observation space. Observations are diverse and inhomogenously 
distributed in space and time. The cost of computing observation equivalents varies widely between 
different observations type, e.g. for conventional observations a simple interpolation in space and time 
is often sufficient whereas for radiances complex and expensive operators are needed.  Load-
balancing these computations across processors are difficult and involve communications of either 
observation information or state-space data. Much effort has been spent to optimize this in the current 
ECMWF 4D-Var system and it does not yet constitute a major obstacle to scaling. However, it will 
require constant attention. 

Another, and perhaps more important, issue is the amount of I/O required. Apart from the first-guess 
information and observation data, constant datasets (coefficient files for the radiance operator, Jb 
statistics for 4D-Var, etc.) have to be read before the analysis can proceed. This is in contrast to the 
forecast model which only needs to read the initial conditions before proceeding. The often large 
amount of output from a forecast in the form of post-processed fields can normally be written out 
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asynchronously as the forecast proceeds. The scaling properties for I/O are often negative (I/O takes 
longer when more processors are used due to the increased cost of distributing the data over 
processors). The importance the question of I/O, as discussed in Section 4, will have for the overall 
scaling of a future data assimilation system crucially depends on the underlying I/O subsystem and the 
amount of (mainly observational) data that will be utilized. 

Finally it is important to remember that a significant part of our computer will be used for research 
experiments, for which the computational resources used is as important as scalability.  In research 
mode we need to run a large range of resolutions. This means that the data assimilation algorithms 
need to be computationally efficient over several orders of magnitude of processors and a large range 
of resolutions. 

8. Possible design of a future assimilation system 

Given the considerable technical and scientific uncertainties discussed above, it is clear that flexibility 
must be at the heart of our plans for the evolution of the ECMWF Data Assimilation system. This 
should also apply to other NWP centres. 

8.1. Flexibility 

It is clear that the complexity of future data assimilation systems will increase. At ECMWF the future 
IFS code will need to accommodate weak constraint 4D-Var with sub-windows running in parallel, 
ensemble based error estimation (from an ensemble of variational assimilations or an ensemble 
Kalman filter), and most likely a hybrid 4D-Var/ensemble system. Managing the additional 
complexity in the code will be another challenge, in addition to the scientific challenges ahead. 

Over the last two decades, computer systems and applications in all domains, scientific or otherwise, 
have become incredibly complex but also increasingly reliable.  This has been possible because of 
improvement in both hardware and software technologies. In particular, object oriented programming 
has played an important role. This technology has allowed the development of increasingly complex 
software designs while at the same time helping to ensure efficiency, reliability and better team 
development work. It is becoming more and more advantageous to adopt similar technology in the 
IFS in order to successfully manage the increasingly more complex system. This is the goal of the 
Object Oriented Prediction System (OOPS) project at ECMWF. 

The OOPS project is divided in two main tasks. The first task comprises the design of a high level 
flexible code structure where data assimilation algorithms can be expressed easily. This code is being 
developed in C++. The second task in the project is to prepare existing parts of the IFS Fortran code 
to make them callable from the high level code. The vast majority of the code in the new system will 
come from a more modular version of the existing IFS Fortran code. 

The OOPS project will make the data assimilation code more flexible. It will also make it more 
efficient. In the short term, because the new code structure can handle multiple resolutions within the 
same executable, 4D-Var can be run in one task. This will save start-up time and I/O that is required 
to communicate between the existing 5 or 7 jobs that make 4D-Var at the moment (see Fig. 5). OOPS 
is also required for the implementation of long window 4D-Var with sub-windows running in parallel. 
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Finally, the productivity of scientists involved in the evolution of complex NWP systems like the IFS 
should also be taken into account. The learning curve for new scientists contributing to the IFS is very 
steep and even experienced IFS developers face enormous technical challenges in their everyday 
activities. The new code structure will allow scientists to focus on their area of expertise by 
encapsulating the different aspects of the problem and making them more independent. Similar 
concerns apply to other NWP centres. 

8.2. A hybrid system and a longer window 

Despite the uncertainties, certain trends seem clear. We will undoubtedly retain and extend the 
existing ensemble component in any future ECMWF Data Assimilation system. The ensemble is able 
to estimate analysis uncertainty, which is used both to provide initial conditions for the Ensemble 
Prediction System and to provide the analysis system with flow-dependent estimates of background 
error covariance. The ensemble component may well continue to be an ensemble of 4D-Var analyses. 
However, it is also possible that an Ensemble Kalman Filter may provide sufficiently good error 
estimates in a more cost effective way. 

For the next decade there will continue to be a need for a high-resolution deterministic analysis. We 
believe that this will continue to be provided by 4D-Var at ECMWF. This analysis will be tightly 
coupled with the ensemble component, which will provide error estimates from which 4D-Var can 
generate flow-dependent background error covariances.  

There is a strong theoretical argument, backed up by experimental results in simplified systems, in 
favour of increasing the length of the 4D-Var analysis window. An extension from the current 12-
hour window to 24 hours is planned for next year, and we believe further extensions to around 2-3 
days will prove beneficial in the future. This is scientifically challenging and will require the 
development of a significantly more advanced representation of model error covariance. It is likely a 
long-window EDA/EnKF will be needed to provide flow-dependent model error estimates. Bias 
estimation for both model and observations is a related important component of the assimilation 
system. It should be noted that the extension of the 4D-Var analysis window will be of even greater 
benefit for atmospheric reanalyses. To be computationally viable, this will require algorithmic 
changes, as discussed in Section 7.2, which enables parallelisation of weak-constraints 4D-Var in the 
time dimension. 

8.3. Optimizing the observation processing  

The current operational 4D-Var at ECMWF consists of a backbone of cycling late-cutoff 12-hour 4D-
Var analyses, from which simplified “early delivery” 6-hour 4D-Var analyses are spun off. 

The backbone late-cutoff suite waits between 5 and 17 hours for the relevant observations to arrive. 
This ensures that more than 99% of all measurements are available for the analysis.  

The early-delivery analyses provide the initial conditions for the operational forecast. These analyses 
only wait between 1 and 7 hours for the relevant observations to arrive. The early delivery analyses 
are also much cheaper to run than the late-cutoff analyses, so they are available more than 10 hours 
earlier, with an approximately 6 hours worse quality. Currently, these early-delivery suites are run 
twice daily, and use initial conditions from the late cutoff suite. Two additional suites of a similar kind 
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are also run to provide boundary conditions to some of our Member States. These assimilations enable 
us to benefit from the large fraction of observations that arrive quickly after being measured. With the 
presently used data cut-off, more than 85% of the available observations are assimilated in these early 
delivery runs, providing more timely forecasts.  As there is continued pressure to deliver forecasts to 
our Member States earlier, the early delivery analyses need simplification and streamlining. A system 
is now being designed where the observations will be continuously prepared for the analysis as the 
observations arrive at ECMWF. This “Continuous Observation Processing Environment” (COPE) is 
intended to improve the efficiency of the operational suites. Currently, most of the observation related 
activities are performed in the time critical path. The ongoing increase in the number of observations 
and increase in model resolution will stretch our ability to deliver the forecasts and associated 
products on time. Moreover, the observation processing tasks are those parts of the operational suite 
that are least scalable, making it an even bigger problem on future computer architectures. COPE will 
enable to move most of the screening tasks out of the time critical window. These tasks are 
schematically defined in the COPE box in Fig. 5, and in the list of cope activities described in Fig. 6. 
Fig. 5 also defines the OOPS activities schematically.  

 An important side issue is that the tight operational schedule leaves very little time to handle 
inevitable observation related operational failures, leading occasionally to delays in forecast 
dissemination. Due to the current design of the observation processing, monitoring and diagnostics 
can only be done after the whole analysis cycle is completed. This makes it difficult to act when 
observation related problems occur. COPE will enhance the early detection and handling of 
observation anomalies that could cause failures in the operational suite and dissemination delays.  

Using ECMWF as a typical global NWP centre, it is useful to summarize, a possible scenario for the 
atmospheric data assimilation system at ECMWF by the end of this decade: 

• A late cutoff 48 hour high resolution deterministic weak-constraint 4D-Var. This system 
would use advanced algorithms to split the time windows into three hour sub-windows that 
are processed in parallel. This would significantly increase the scalability of the overall 
system. The algorithm would also encompass overlapping windows, with one analysis 
performed every 12 hours. 

• Tightly harnessed to the deterministic 4D-Var, an Ensemble of Data Assimilations (EDA), 
based on long window weak constraint 4D-Var, to provide both flow-dependent background 
error and model error estimates.  

• Twice or more per day, an early delivery and boundary condition, short-window, high 
resolution 4D-VAR run. This early delivery run will be heavily streamlined so that the non-
scalable work to be performed during the critical path remains minimal. 

Variations around this baseline scenario will depend upon technical and scientific considerations, and 
available HPC resources. Indeed, the benefit of extending the window will have to be balanced 
against increasing the resolution of the inner loop or increasing the number of outer loops. Also, if 
EnKF techniques mature enough to fulfil both the required provision of high quality covariances for 
4D-Var and initial perturbations for EPS, they will be considered for the ensemble component of the 
assimilation suite.  
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Figure 5: A schematic representation of the data assimilation tasks handled by COPE 
(Continuous Observation Processing Environment) and OOPS (Object Oriented Programming 
System) in ECMWF’s next generation data assimilation system.  

 

 
Figure 6: A schematic diagram describing the main tasks handled by the COPE (Continuous 
Observation Processing Environment) that is under development at ECMWF. Courtesy Anne 
Fouilloux. 
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9. Conclusions 

The high performance computer resources at ECMWF and other NWP centres have increased 
exponentially during the last 30 years, with a doubling time of approximately two years. This rate of 
progress is expected to continue during the next decade. The improved performance will primarily 
come from more cores on each chip, rather than increased individual core performance. So during the 
next decade we expect HPC systems with of the one million cores to be common at global NWP 
centres. 

Using the ECMWF data assimilation system as a typical example of a state-of-the-art NWP system, it 
is shown that there are scalability problems for low resolution forecast models and 4D-Var analysis on 
today’s high performance computer with around 10,000 cores. To be able to use HPCs with an 
expected increase in the number of cores by a factor of 100 will lead to significant challenges for the 
data assimilation strategies applied. 

ECMWF has invested considerably in 4D-Var over more than two decades and this investment has 
incontestably paid off, contributing significantly to maintaining ECMWF as the world leader in global 
NWP. Scientific developments in data assimilation at ECMWF have demonstrated that 4D-Var 
provides the flexibility required to deal with a large variety of observations, to implement advanced 
bias correction and quality control, and deal with non-Gaussian error distributions (e.g. cloud and rain 
assimilation). 

We believe that there is still much benefit of 4D-Var to be exploited. In particular, long-window 
weak-constraint 4D-Var offers considerable opportunities that should be pursued (Fisher et al. 2012, 
Fisher and Auvinen 2012 in these proceedings). These benefits will serve the operational data 
assimilation suite and the reanalysis requirements. 

It is also very clear that ensemble-based data assimilation methods, already used today, in the future 
will be even more central to the assimilation system and to the ensemble prediction system: for 
estimation of analysis uncertainty, provision and cycling of flow-dependent error covariances, and 
provision of initial perturbations. The baseline approach at ECMWF is to further exploit the ensemble 
of 4D-Var that has already been developed and operationally implemented, while in parallel 
continuing the development of an Ensemble Kalman filter which could offer in the future an attractive 
alternative option to the EDA. 

The proposed scenario combining a long-window weak-constraint 4D-Var with an EDA is realistic 
and ambitious. It also presents a number of technical and scientific challenges that will require 
attention: a profound modification of some algorithms to substantially increase scalability, a 
reorganisation of the IFS data assimilation code that allows much more flexibility, extensive research 
in the area of model error specification, and redesign of the time critical part of the operational suite. 
Addressing these challenges successfully will allow a data assimilation system that can run efficiently 
on the computers available during the next decade. 

Beyond 2020, the HPC architectures could be such that data assimilation algorithms may require even 
more radical changes to obtain scalability. As discussed in Section 7, the problem will have to be 
considered from a general point of view, including the scalability of the high resolution forecast 
model itself.  
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