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1. Introduction 

Seasonal forecasting is a field with enormous potential influence in different socioeconomic sectors, 
such as agriculture (Challinor et al., 2005), health (Thompson et al., 2006) and energy (García-
Morales and Dubus, 2007). 

The feasibility of seasonal prediction largely rests on the existence of slow, and predictable, variations 
in the Earth’s boundary conditions of soil moisture, snow cover, sea-ice and ocean surface 
temperature (Shukla and Kinter, 2006), and somehow also the stratosphere (Marshall and Scaife, 
2009; Marshall and Scaife, 2010), and how the atmosphere interacts and is affected by these boundary 
conditions. For example, a warm sea surface temperature (SST) anomaly, in say the tropical Pacific 
Ocean will lead to increased heat flux from the ocean to the atmosphere. This increased flux, if 
sufficiently large in magnitude and spatial scale will alter the atmospheric boundary layer and 
ultimately change the structure of the rainfall and the release of latent heat in the free troposphere. 
The change in tropospheric latent heat release, in turn, will perturb the circulation leading to climatic 
anomalies in remote regions of the globe. Of course the atmospheric response itself interacts and 
affects the SST. Hence, the seasonal predictability or the quality of the seasonal prediction is a 
coupled problem. 

A major portion of predictability at monthly to seasonal time scales is attributed to anomalies in 
tropical sea surface temperatures (SST), in particular those related to El Niño-Southern Oscillation 
(ENSO, e.g., Chang et al. 2006) events (Kirtman and Pirani, 2009). This makes seasonal forecast 
quality reach a maximum over most tropical regions. Although the predictability is lower at 
extratropical latitudes, some positive skill has been found in those regions (e.g., in North America) 
associated with ENSO teleconnections (e.g., Quan et al., 2006), and also with other sources of 
seasonal predictability, such as the persistence of the North Pacific decadal oscillation (Gershunov 
and Cayan, 2003; Lienert et al., 2011) or the moisture content (Douville, 2004). The predictability of 
temperature and precipitation in Europe differs significantly from that over North America, due to 
different characteristics of the variability and remote influences of the local climate (Rodwell and 
Doblas-Reyes, 2006). 

In most of the extratropics, the signals predicted by general circulation models are weak and do not 
add valuable information over a climatological forecast. However, some preliminary studies have 
revealed some signals of skill for particular European regions, periods, and variables (Doblas-Reyes et 
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al., 2000; Feddersen and Andersen, 2005; Frías et al., 2005; Shongwe et al., 2007). Moreover, some 
traces of seasonal skill induced by ENSO events have been reported in Spain (Sordo et al., 2008). 

In previous decades, a considerable effort has been made to improve the understanding of the physical 
phenomena responsible for the observed seasonal variability and to transfer the advances to the 
operational numerical forecasting systems, e.g. Saha et al. (2006). This transfer requires an 
appropriate assessment of the forecast skill achieved in different regions for different variables to 
evaluate future model improvements in terms of forecast quality. The aim of the present study is to 
illustrate the forecast quality over Europe of a state-of-the-art seasonal forecasting system for both 
temperature and precipitation. A brief summary of the experiment follows in Section 2. Results from a 
simple persistence model that will be used as a benchmark are described in Section 3. The most 
relevant characteristics in terms of model drift and forecast quality results are given in Sections 4 and 
5. A summary and a brief discussion is offered in Section 5. 

2. Data 

2.1. Experimental set-up 

The ECMWF seasonal forecast System 3 (S3 henceforth, Stockdale et al., 2011) is the system used in 
this study. It has been operational since 2007 until recently and consists of the ECMWF atmospheric 
model IFS coupled to the HOPE ocean model. The cycle 31R1 of the atmospheric IFS model is used 
in S3. This cycle was operational in medium-range weather forecasting in 2006. The only change to 
the IFS model in seasonal forecasting compared to the medium-range forecasts concerns its reduced 
resolution, where S3 runs the IFS with 62 vertical levels, extending to ~5 hPa, and a TL159 spectral 
horizontal resolution, with a corresponding grid mesh resolution of 1.125° or about 125km. Important 
features of the atmosphere model include two-time level semi-lagrangian numerics with a finite 
element discretization in the vertical, the RRTM (Rapid Radiation Transfer Model) scheme for 
longwave and a six spectral interval scheme for shortwave radiation, mass-flux convection, prognostic 
clouds, a boundary layer scheme with an eddy-diffusivity mass-flux framework, the TESSEL tiled 
surface scheme with six land tiles and a four-level representation of soil, turbulent orographic form 
drag, and sub-grid scale orographic drag. A comprehensive model of the ocean surface waves and 
their interaction with the atmosphere is also included. The model numerical code allows for a one-
hour time-step. The ocean-model resolution remains effectively 1o x 1o in mid-latitudes, with a 0.3o 
meridional resolution at the equator. There are 29 levels in the vertical with the highest resolution (10 
m) near the surface. 

S3 does not have a physically-based model of sea ice. Instead, for both forecasts and hindcasts, the 
ocean model specifies persistence for ten days of the initially specified fractional ice cover, taken 
from the ECMWF operational NWP analyses or ERA-40 reanalyses, as appropriate. After a forecast 
time of ten days, the specified fractional ice cover is a linear combination of the initial sea ice cover 
and the climatological ice cover valid at the specification date. Beyond a forecast time of 30 days, the 
specified sea ice cover is simply defined by linear interpolation of climatological monthly mean 
values. 
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The forecasts are initialised in the atmosphere and soil with the ERA-40 re-analysis before 2002 and 
with the ECMWF operational analysis afterwards. Every simulation has a start date of the first of the 
month and is seven months long. The ocean is initialized with the ORA-S3 reanalysis (Balmaseda et 
al., 2008). They consist of an ensemble of eleven members generated by sampling uncertainties in the 
initial conditions of both the atmosphere and ocean. The initial atmospheric conditions are perturbed 
with atmospheric singular vectors, calculated as per the ECMWF medium-range ensemble forecast 
system for this atmospheric model version (a combination of initial singular vectors, evolved singular 
vectors, and targeted singular vectors in the tropics). Stochastic physics (stochastic perturbation of 
physical tendencies with a six-hour decorrelation time scale) is active throughout the forecast period, 
again as in the medium-range ensemble forecast system. The ocean initial conditions in S3 are 
provided not from a single ocean analysis but from a 5-member ensemble of ocean analyses, created 
by adding perturbations to the wind forcing used in the analysis. The ocean initial conditions are 
further perturbed by adding sea surface temperature perturbations to the five member ensemble of 
ocean analyses. 

All the simulations analysed in this study are retrospective forecasts (also known as re-forecasts or 
hindcasts). The focus has been on the one-month lead seasonal averages for March-to-May (MAM), 
June-to-August (JJA), September-to-November (SON) and December-to-January (DJF). These re-
forecasts are initialized on the 1st of February, May, August and November of each year, respectively. 

There are several sources of variation of climate which are not modelled interactively in S3, but which 
can be specified. One of them is the time-variation of greenhouse gases in the atmosphere model. 
Changes in greenhouse gas concentration have a substantial impact on seasonal forecasts, even at a 
time range of only a few months, when comparing forecasts and hindcasts made decades apart 
(Doblas-Reyes et al., 2006). An approximate time-history of CO2, methane and CFCs is specified, 
based on observed values up to 2000 and values derived from the IPCC A1B scenario beyond this. In 
the re-forecasts the year-to year variability in the solar constant is specified, although a fixed value is 
used after 2000. It was decided to switch off the option for time variation of volcanic aerosol in the 
hindcasts, since real-time volcanic aerosol analyses are not available for the operational forecasts. 

2.2. Reference data 

Various measures of forecast quality have been used to assess the differences between the 
experiments. All forecast quality measures have used ERA-Interim as the atmospheric reference 
dataset, except for near-surface air temperature and precipitation for which the Global Historical 
Climatology Network (GHCN; Peterson and Vose, 1997) and the Global Precipitation Climatology 
Centre (GPCC; Schneider et al., 2008) have been used, respectively. 

Every forecast quality measure has been computed taking into account the systematic error of the 
forecast systems. The reader should be aware that this linear method assumes that there is no 
relationship between the model drift and the anomalies. 
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3. Benchmark predictions: persistence 

Persistence of the observed anomalies is perhaps the simplest form of prediction. Persistence-based 
predictions will be used as benchmarks to assess the forecast quality of the dynamical predictions are 
given. The predictor is the monthly mean observed anomaly of the variable ahead of the start of the 
prediction. 

The spatial distribution of the persistence-based skill is shown in Figure 1 for the four standard 
climatological seasons. Red circles appear over the areas where there is skill. Skill appears in summer 
over Southern Europe and the Middle East. This skill could arise from long-term trends and changes 
in the Bowen ratio associated with soil moisture anomalies in the more arid Mediterranean area. There 
is substantial skill over central and Northern Europe in spring along the snow line into central Europe, 
in agreement with the results described in Shongwe et al. (2007). Other candidates for the skill may 
include the influence of coastal SSTs, the snow albedo and the latent heat effects of snow melting. 
Positive skill appears over much of western Europe in autumn. It is less clear what processes could 
lead to this skill although both long-term trends and the role of Atlantic SSTs may be important. In 
winter the atmospheric internal variability is strong, which could explain the reduced skill of the 
persistence forecasts. These results agree well with those of Rodwell and Doblas-Reyes (2006). The 
skill shown decreases fast with lead time. 

The persistence skill for precipitation is much lower than for temperature, except in Southern Europe 
in late winter, and it is hardly statistically significant in any area. One of the reasons for precipitation 
showing a lower skill due to persistence might be due to the lower precipitation long-term trends 
observed in the area (not shown). 

More sophisticated methods to empirically predict seasonal climate variability have been developed, 
but they hardly give higher skill than the one shown here (Folland et al., 2012; Smith et al., 2012). 

 
Figure 1: Correlation of one-month lead seasonal predictions from a persistence model based on 
the persistence of the anomalies of GHCN near-surface air temperature. Predictions have been 
computed over 1981-2008. Results are plotted only where the correlations are significant with 
80% confidence. Red circles correspond to the areas where consistently positive skill is found. 
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4. Model drift and systematic error 

Model inadequacy causes forecasts to drift away from the observed climate towards an imperfect 
model climate. The drift is the evolution of the systematic error with forecast time and is the cause of 
the model systematic error to depend on the start date. The systematic error is assessed as the 
difference in the features of the climatological distribution estimated from the model climate, which 
are the result of averaging predictions from all the years and ensemble members made from a specific 
start date, and of the observed or reference climate for the same calendar period. 

Figure 2 shows that the mean sea level pressure systematic error has a strong seasonality. While in 
winter the model enhances the north-south gradient by deepening the Icelandic low and strengthening 
the Azores high leading to a stronger zonal flow over the Atlantic and Europe, the summer mean 
systematic error has a stronger and northward shifted Azores high. The equinoctial seasons are closer 
to the situation in winter. The mean systematic errors for temperature (Fig. 3) and precipitation agree 
well with the mean errors in circulation. This is because a variable like precipitation is dominated in 
most parts of Europe by atmospheric advection of moisture from the Atlantic (e.g. Ent et al., 2010). 
There is a warm and wet bias over northern Europe and dry and cold bias over the southern 
Mediterranean region in winter in agreement with the zonal flow excess. The warm and dry bias in 
summer over southeast Europe fits well with the collocated reduction in mean sea level pressure. An 
important wet bias is found in spring across northern Europe in agreement with the negative bias in 
mean sea level pressure. 

 

 

Figure 2: Mean sea level pressure systematic error in the mean for the System 3 one-month lead 
re-forecasts over the period 1981-2005. ERA Interim data have been used as reference. 
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Figure 3: Near-surface air temperature systematic error in the mean for the System 3 one-month 
lead re-forecasts over the period 1981-2005. GHCN data have been used as reference. 

 

Figure 4: Winter leading empirical orthogonal function of mean sea level pressure for a) ERA 
Interim, b) one-month lead and c) three-month lead System 3 re-forecasts. Computations have 
been performed over the period 1981-2005. The fraction of explained variance appears at the 
bottom right corner of each panel. Units are arbitrary. 
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The drift is established in the first few months of the simulation. An analysis of the drift shows that 
the one-month and four-month lead time seasonal mean systematic error is very similar. 

There are also important systematic errors in the variability. These errors are typically taken into 
account when formulating probabilistic predictions. Some systematic errors also appear in the spatial 
distribution of the variability, as shown in Figure 4. The leading empirical orthogonal function of the 
mean sea level pressure is typically used as a proxy of the North Atlantic Oscillation (NAO; Portis et 
al., 2001). While S3 reproduces all the NAO spatial features, it underestimates the variance 
associated, even with short lead times. 

5. Forecast quality 

Figure 5 illustrates the S3 near-surface air temperature ensemble-mean skill. The skill is significantly 
different from zero in the same regions where the persistence-based predictions described in Section 3 
have skill, plus some additional regions such as central Europe in winter, the western Mediterranean 
region in summer and western Russia in autumn. In spite of the substantial systematic errors, S3 is 
able not only of persisting the slow variability associated with persistence but to propagate some of 
the initial-condition signal. Instead, the ensemble-mean skill of precipitation is as low as for the 
persistence-based predictions. 

 

 

Figure 5: Correlation of one-month lead System 3 seasonal predictions of near-surface 
temperature computed over the 1981-2005 period. The GHCN dataset has been used as reference. 
Results are plotted only where the correlations are significant with 80% confidence. Blue (red) 
circles correspond to the areas where consistently positive skill is found for the dynamical 
(persistence-based and dynamical) predictions. 
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The skilful summer temperature predictions for southern Europe are illustrated in Figure 6. Part of the 
skill can be associated with the slow warming trend in the region that the forecast system reproduces 
correctly (Weisheimer et al., 2011a). The impact on the skill of the global warming trend is shown in 
Figure 7. The ensemble-mean correlation of temperature is reduced almost everywhere when the 
predictions are linearly detrended, except in the areas where the skill can be linked to variations in the 
snow cover. However, large skill improvements could still be achieved by correctly reproducing the 
global-warming effect on the predictions. The forecast system is far from correctly predicting the 
variations in the global-mean temperature, for which the one-month lead ensemble-mean skill is 0.69 
in summer and 0.44 in winter. Besides, the local impact of global warming is not correctly represented 
in the forecast system as found with the regression of the near-surface air temperature on the global-
mean temperature (not shown). The problem is particularly obvious over the eastern North Atlantic, 
as it has already been found in historical uninitialized experiments (Oldenborgh et al., 2009), and is 
another reason to keep improving the dynamical models. A similar analysis performed for the 
precipitation re-forecasts suggests that the local variability linked to the global-warming effect is 
much smaller than for temperature. 

Beyond the impact of global warming on European skill, the NAO could be considered as another 
source of seasonal predictability. The S3 skill for the NAO is low compared to what is obtained for 
other main modes of variability like ENSO. In spite of the satisfactory representation of the NAO 
pattern in the forecast system, the highest correlation is not higher than 0.35 and appears in winter. 

 

Figure 6: One-month lead System 3 summer seasonal predictions of temperature for southern 
Europe (30º-45ºN, 10ºW-40ºE). The green box-and-whisker plots represent the range of the 11-
member ensemble, with the central box corresponding to the interquartile range, the blue dot the 
ensemble mean and the red dot the observational reference (ERA Interim). The ensemble-mean 
correlation with the reference is included in the box. The blue (red) horizontal lines are for the 
upper and lower climatological terciles for the re-forecasts (observational reference). The 
variance overestimation indicated in the box agrees well with the larger range between the 
terciles of the predictions than between the reference terciles. 
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Figure 7: Correlation of linearly detrended one-month lead System 3 seasonal predictions of 
near-surface temperature computed over the 1981-2005 period. To detrend the forecasts, the 
linear regression against the predicted and observed global-mean temperature has been removed 
from the anomalies. The GHCN dataset has been used as reference. Results are plotted only 
where the correlations are significant with 80% confidence. Blue circles correspond to the areas 
where consistently positive skill is found for the dynamical predictions in Figure 4. 

The impact of ENSO on the European region as a skill source deserves a bit more understanding. S3 
is one of the best seasonal forecast systems predicting ENSO (Stockdale et al., 2011). However, the 
teleconnections between ENSO and the European climate are most often than not, wrongly 
reproduced in the model. Figure 8 shows an example for one of the best known teleconnections 
between the European climate and ENSO: the link between the western Mediterranean spring 
precipitation and La Niña events (Oldenborgh et al., 2000). The teleconnections have the opposite 
sign to that found with observational data, especially in western Europe. This has been found for 
several variables, seasons and lead times and is one of the main limitations that hampers the 
production of more skilful European forecasts. It is possible that ENSO, as a major source of 
predictability at seasonal time scales, is only active in the European region under certain conditions, 
offering windows of opportunity for European seasonal prediction (Frías et al., 2010). 

Climate forecasts are essentially probabilistic. This means that a statistical model is required to 
transform the ensemble of predictions into a probability density function. Figure 9 shows a cartoon of 
some of the approaches typically used. While the simplest option consists in using a histogram based 
on the individual members, probability density functions can be estimated in either a parametric (as 
with fitting a Gaussian distribution to the ensemble) or non-parametric (e.g. with a kernel dressing) 
way. The quality of these predictions, when considered for dichotomous events, can be assessed with 
the reliability diagram (Fig. 10). The probabilistic scores for the European region, as happens with the 
ensemble-mean skill measures, are lower than for most of other regions. The reliability diagrams in 
Figure 10 show that most of the predictions are clustered around the climatological frequency, with a 
flat curve for the most populated bins. The flatness of the curve suggests that the system is unable to 
reliably distinguish between events and non-events when the probability forecast is close to the 
climatological frequency. For more extreme probabilities (i.e. close to zero or one), the curve depicts 
a slope, suggesting that the system is more skilful when issuing probabilities within that range.  
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Figure 8: Regression (mm/day/K) of (top) GPCC spring precipitation on HadISST1 Niño3.4 time 
series and (bottom) S3 one-month lead spring precipitation on the predicted Niño3.4 time series. 
The computations have been performed over 1981-2005. 

 
Figure 9: Illustration of different approaches to obtain probability forecasts from an arbitrary ensemble 
forecast. The ensemble-member values are shown with blue short lines. (a) A histogram can be constructed from 
the ensemble values and relative frequencies estimated from it. The blue line corresponds to a kernel estimate of 
the probability density function, and matches quite closely the histogram. (b) For dichotomous events, the 
probability forecast is computed with respect to a threshold, which in the figure has been chosen as 1.75. The 
blue area corresponds to the forecast probability of the variable being above the chosen threshold. (c) An 
alternative method to estimate the probability density function consists in fitting a parametric function, in this 
case a Gaussian, to the ensemble values. The blue area is the forecast probability of the variable being above 
the chosen threshold, and is different from that shown in panel b. 
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Figure 10: Reliability diagrams for one-month lead System 3 summer seasonal predictions of a) 
near-surface temperature and b) precipitation above the upper tercile for southern Europe (30º-
45ºN, 10ºW-40ºE) computed over the 1981-2005 period. The size of the circles corresponds to the 
relative frequency each forecast probability bin is populated. The grey bars are for the 95% 
confidence intervals of the observed relative frequency at each bin obtained with a 1,000 sample 
bootstrap method. The vertical blue line indicates the average probability while the horizontal 
one is for the climatological frequency of the event (theoretically one third for this type of events 
based on climatological terciles). The dashed grey line determines the areas of the diagram with 
no skill. 

 

Unfortunately, those probabilities are issued less frequently. As a result, the Brier and ROC skill 
scores for the event “anomalies above the upper tercile” are -0.078, with a 95% confidence interval of 
(-0.287,0.093) and 0.148 (-0.073,0.379) for temperature and -0.088 (-0.167,-0.038) and 0.075 (-
0.027,0.175) for precipitation, respectively. Similar results have been found for northern Europe. 

Multi-model, perturbed parameters and stochastic physics approaches to deal with model uncertainty 
have been found to improve both reliability and skill of probability predictions (Doblas-Reyes et al., 
2009). This is also the case for Europe, as described in Weisheimer et al. (2011b). 

6. Summary and discussion 

This study offers an illustration of the current level of skill over Europe of a state-of-the-art global 
seasonal forecast system. While the forecast quality of European seasonal predictions is limited, there 
are regions with significant skill linked to global warming and soil processes such as snow cover. The 
skill goes beyond what can be achieved by using a simple persistence model and is found in spite of 
the important systematic errors of the system. ENSO being the main source of global seasonal skill, it 
has been found that this forecast system has important drawbacks as far as the ENSO teleconnections 
is concerned. The NAO, another main player in determining European climate variability, has limited 
skill, mainly in winter. 
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Apart from ENSO, other sources of skill linked to SST variability are the tropical and extratropical 
Atlantic. However, the processes linked to such predictability seem to need an adequate representation 
in the forecast system. In a maximum covariance analysis between the North Atlantic winter mean sea 
level pressure and the preceding northern tropical Atlantic SSTs (not shown), the leading pair of 
patterns links an NAO-like winter circulation to a warming of the tropical Atlantic in autumn, while 
the second pair links a wave train across the North Atlantic to a dipole in the tropical Atlantic. When 
the maximum covariance analysis is applied between the observed October SSTs and the one-month 
lead time mean sea level pressure forecasts, the patterns over the tropical Atlantic are very similar to 
those obtained with the observational data while the winter pressure patterns barely resemble those 
found in the observations. This suggests that the forecast system might not be taking advantage of the 
predictability from the tropical Atlantic SSTs. As for the extratropical SSTs, Rodwell and Folland 
(2002) and Iwi et al. (2006) found a link between a tripolar North Atlantic SST pattern in May and an 
NAO-like signal the following winter. As in the previous case, the forecast system has problems to 
reproduce this link in a maximum covariance analysis between the observed May SSTs and the one-
month lead winter mean sea level pressure, where the simulated pattern is degenerated beyond the 
leading pair and shows large differences with the one obtained from the observations. The difficulty 
for S3 to take advantage of these sources of skill, a problem that can easily be extrapolated to many 
other global seasonal forecast systems, could be linked to the many systematic errors in the SSTs (for 
instance, in the tropical Atlantic) and the tropical-extratropical circulations. Improvements in the 
models that go beyond resolution increases will be fundamental to go beyond the current levels of 
European seasonal skill. 

Many different initiatives are ongoing to improve seasonal prediction over Europe. Important 
modifications of and sensitivity experiments to the initialization of soil moisture (Koster et al., 2011), 
snow cover (Orsolini et al., 2012) and sea ice (Chevallier and Salas-Melià, 2012) are being explored. 
Fundamental topics like the commonality of the errors of the different dynamical forecast systems or 
the formulation of more process-based empirical models (Smith et al., 2011) will be addressed more 
widely in the near future. Special mention deserves the efforts that will be necessary to reduce the 
different aspects of the systematic error and, among them, the contentious role of the stratosphere to 
modulate the action of the different signals playing a role in determining the European climate (Ineson 
and Scaife, 2009) and the correct representation of the impact of the natural and anthropogenic 
changes in atmospheric composition. There seems to be a long way to go yet before producing 
seasonal predictions useful for a wide range of users, but the present predictions can already be of use 
for some well-trained ones. 
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