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ABSTRACT

The aim of this paper is to propose an overview of the spetidics of observation errors in data assimilation
schemes. Different ways of diagnosing the statistics o$e¢herrors are in particular presented. The evidence of
correlations for a given number of observations and the Wway tan be represented are also discussed.

1 General framework

From a general point of view, the specification of observatorors is related to the Kalman Filter
formalism, where one wants to obtain an estimdtef the true state, from two pieces of information: a
background® associated with an error covariance maBiand observationg® associated with an error
covariance matrilR. The analysis is given by the following equation

¥ =x"+0x=Kd=BHT"(HBH' +R)1d 1)

and is then obtained by adding a correctipnto the background. This correcti@dx is itself given by
the application of the gain matri to the innovation vectod containing the differences between obser-
vations and their equivalents for the background. The gaitriris a particular expression, wheBeH

the linear or linearized observation operator &appear. The quality of the analysis will then depend
on the correct specification of those three ingredients lansl particularly on the correct specification of
matrix R.

It is easy to see that such a solutihis also the expression that minimizes the following quadatst
function:

J(6x) = 1/2 [6x" B 1ox+ (Hox—d) TR I (Hx —d)]. @)
In the case where the observation oper&tds non-linear, the incremental formulation proposes a way

to minimize the original non-quadratic cost function, bynimizing a set of successive quadratic cost-
functions (Courtieet al, 1994):

I(x) = 1/2[(x—x°) TBH(x =) + (H(x) —Y°) TR (H (x—y°)]. ®)

Even in such a slightly non-linear problem, one can consillat analysis, background, model and
observation errors are linked, at first order, by such a finelation:

€2 = (1 —KH)e +Ke®, (4)
with €2 =x® — %, g = x* —xt ande® = y° — H(x'), wherex is the unknown true state.
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The background errag®” for the next assimilation is the result of the applicatiorttef tangent-linear
modelM to the current analysis errgf plus an erroe™ intrinsically related to the model:

e = Med 4 gM. (5)
It is easy to check that the exact covariance matrix for tlayars error is given by the expression,
A= (I —KH)B!(I —KH)T + KRKT, (6)

whereB! andR are the exact covariance matrices dads the possibly sub-optimal or inexact gain
matrix.

A correct representation of the background error covaeianatrixB! " for the next analysis is then given
by the expression

B =MAMT +@Q, (7)
whereQ' is the model error covariance matrix.

From these expressions, it is interesting to note Bas rather an input in these equations@s It is
not an output as matrig'*. That is, it has to be specified, but cannot be documented ajganithm
such as Ensemble Kalman Filtering.

Actually, what are called observation errors, in assingfaischemes, are the differences between ob-
servations and their equivalents for the virtual true madatex!, obtained by the application of the
observation operatdi to this true state. These differences can be developed as

€ = yY—H(X)
Y-y +y —H(X) ®)
= & —¢€},

wherey! is the true state equivalent yff. This expression makes appear the actual instrument aligeTv
error €Y and an erroeg,, which is a complex function of

e the type of observation (and in particular, whether theyimstu or integrated observations, like
satellite radiances),

e the resolution of the model state, which makes appear witalled the representativeness error,

e and also the precision of the observation operator, edpefiasatellite observations.

2 Methods for estimating observation error statistics

Observation errors are not explicitely known. However, riorimation on the statistics of those errors
can be found in the innovations, that is in the departuresdmt observations and background. A first
method to extract an information on the observation erraawae from the innovations is the so-called
Hollingsworth and Lonnberg method (Hollingsworth and Lbarg, 1986). The principle is to calculate
an histogram of innovation covariances, stratified agaepiration. If one assumes that observation
errors are spatially uncorrelated and that observationbaciground errors are uncorrelated, one can
fit a model of background covariance to this histogram. Therdept of this covariance model at zero
separation is then the background variance and the obervatriance is simply the difference between
the variance of the innovations at zero separation and ttiggbaund error variance.

A second diagnostic that was proposed is a diagnostic bast#te®o-calledn, diagnostics, that is the
expected value of the above-mentionned cost function atiiténum, for the analysis. It can be shown
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that the statistical expection for the total cost functipmcluding theJ? andJ° term, should simply be
equal top, the total number of observations in an optimal assimita{Bennett, 1993). More precisely,
it can be shown (Talagrand, 1997) that the statistical ex’fiea of any sub-pard® of the J° term of the
cost-function is given by the expresssion

E[3°(x®)] = pi — Tr(HiAHTR 1), 9)

where p; is the number of observations associated with this sub-pértand R, respectiveley are the
corresponding observation operator and error covariaratexnA is the analysis covariance matrix for
the resulting estimation.

If the actual mean value of a sub-partXSfdeviates from the previous optimal value, it can be expected
that this may be partly due to a bad specification of obsemwagirors for the corresponding observations.
Then, a tuning procedure of the observation error variasite determine a normalization coefficient as
the ratio between the observed valuel®fx?) and its expected value:

£ = J0S)/ERA)
= J0¢)/[p— Tr(HAHTR ). (10)

This is possible, because it happens that this complicatpeession can be computed, even in a vari-
ational scheme, by a randomization procedure based on @ipetion of observations (Desroziers and
Ivanov, 2001; Chapnikt al, 2004).

By the way, the expressiofir(H;AHTR 1) is nothing else that the mean sensitivity of the analysis to
the particular subset of observatidns

It happens then that an ensemble variational assimilatvbere observations are perturbed provides, as
a by-product, a way to tune the error variance of the obsensaiand also a way to measure their mean
impact in the analysis (Desroziegsal, 2009).

It can also be shown that such a tuning procedure for thenaiaf observation errors is equivalent to a
maximum likelihood approach (Dee, 1998). Assuming thairthevation vectod is a Gaussian random
vector with mean 0 and covariance mattxand thatD is a function of the parameter vectgrthen the
conditional pdf of a certain realization dfknowingsis given by the likelihood function

1
N P TFCIE)

The maximum likelihood estimate of the true coefficient ved is the one that mimimizes the Log-
likelihood function

exp(—1/2d"D(s)d). (12)

L(s) = —log(f(d]s)). (12)

Other diagnostics are possible. In particular, it can bevshibat the statistical expectation of the cross-
products between the departures “observations - analg8isind the departures “observations - back-
ground”d should be equal to the observation error covariance metitixa consistent analysis.

A simple geometrical interpretation of these relations foamd in Figurel, which symbolizes the sim-
plified case of the construction of the analystf a single parametes, using an observatioyf distant
of £° from the truthx and a backgroung? distant ofeP from X. If the scalar product of two vectors of
errors is the statistical expectation, then observatioor @nd background error are orthogonakiatif
one assumes that they are statistically uncorrelated. rigmgte (x°, X', y°) is then a right triangle af.

By construction, the analysis is a linear combinationddandy® and is then on the line defined b§
andy®. On the other hand, the analysis eredrmust be minimal and then orthogonalyb— x° that is
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Figure 1: Geometrical representation of the analysis.

to the innovation vector. Then, the application of the Helheorentd®d = €°2 leads, in particular, to
this relation forR.

A main interest of this diagnostic is that it is very simplargplement in any data assimilation scheme.
The only thing to do is to compute a posteriori cross-proslietween the departures “observations -
analysis” and “observations - background”. Moreover, ome @lso use such computations to diagnose
cross-covariances between different observations. Tdssoleen applied, in particular, at some centres
to diagnose the correlations between satellite channelpaiial correlations.

However, it has to be kept in mind that all these diagnostienat exact procedures. They all have limi-
tations and it is important to be aware of these limitatidngarticular, it appears that those diagnostics
have to rely on implicit assumptions.

vot=4von=3.99

Figure 2: Function @iag(vgpet), with L? = 300 km and P = 0 km, and true value of observation error
variance ¥ = 4.
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vot =4von =3.97

Figure 3: Same as Fig2, but with L° = 300 km and = 200 km.

A first assumption that is made and that has to be true to madte dimgnostics work is that there is
a spatial correlation in background errors and no spatiaktaiion or a different spatial correlation in
observation errors. Figur2 shows the ability of the observation space diagnostic towexcthe right
variance of observation in a toy analysis on a circle. It shokat if the two lengthscales are very
different, then starting from an incorrect variance of obationvg,..equal to 1, as the exact variance is
equal to 4, then the diagnosed vaug%g is already equal to 3 after one analysis with the incorreltteza
The diagnosed value after a new analysis with the improviedwaill still improve the estimation of the
variance. Then, it appears that such an algorithm will verigldy converge towards the exact value in
this case and that the value obtained after a single apiplicaf the diagnostic is already very close to
the exact one.

The behaviour of the convergence is completely differethéf lengthscales of background and obser-
vation errors become closer. In this case (Figd)rat can be seen that the value obtained after a single
iteration is not very different from the mis-specified vahral that the process will very slowly converge
towards the exact value.

3 Diagnostic of observation error variances

Figure 4 shows an example of the application of the diagnostics baseitie Jni, diagnostics for the
French 4D-Var assimilation scheme. The figure shows thendsep reduction factor that should be ap-
plied to the different observation errors. Indeed, one eatlsat thes® values are rather over-estimated
in the assimilation scheme. This is especially the casen®ISATWIND or the radiance observations
where the diagnostics indicate that the sigmao are overat&d by a factor 2. Of course, it is known that
the overestimation of the errors in the assimilation isejaften done on purpose in order to compensate
the lack of correlations in the specified matiRx

Figure5 shows another example, provided by Niels Bormann et al (2@f1he application of different
kinds of diagnostics of the® values for AMSUA channels. This figure shows that all diagicesgive
similar values and that these values are much lower tharpt@fied values in the ECMWF system. So,
it also appears that the° values were rather overestimated in the ECMWF 4D-Var.
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Figure 4: Normalization coefficients of tle® values in the French Arpege 4D-Var.
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Figure 5: Estimateds® values for AMSU-A channels (from Bormann et al, ECMWF, 2011)

4 Diagnostic of observation error correlations

Bormann and Bauer at ECMWF (2010) have also produced diffefiagnostics to measure the inter-

channel correlations for AMSUA errors (Figu. The three diagnostics applied actually show that
there is no inter-channel correlations for this specifidrimaent. They also showed that there is no
spatial correlations in those observations and then thet tlariances could be reduced according to
the previous diagnostic on the variances. Indeed, ECMWE&idd a very nice positive impact on the

forecast skills by just giving more confidence to the AMSUAada

A different situation is found for IASI channels (Bormaahal, 2010), since in this case channels sen-
sitive to water vapor or with strong surface contributiohews considerable inter-channel correlations
(Figure7).

The same kind of results were obtained by Stewart (2009)eaUttiversity of Reading, since she also
found strong correlations for specific IASI channels (Fegix.

Similarly, this was also obtained by Garaatlal (2007), at Environment Canada, for AIRS channels,
who used a Hollingsworth and Lonnberg like method to diagribese inter-channel correlations (Figure
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Figure 6: AMSU-A inter-channel error correlations (from Baeann et al, ECMWEF, 2010).
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Figure 7: 1ASI inter-channel error correlations (from Boemn et al, ECMWEF, 2010).

9).

Then, there are evidences of inter-channel correlationsdtellite observations, but there are also ev-
idences of spatial correlations for some observations.ahtiqular, Bormanret al (2003) showed that
there are large spatial correlations in the SATWIND obsiowua (Figurel0).

As they found no spatial correlations for the AMSUA data, iBannet al (2011) diagnosed, on the con-
trary, significant spatial correlations in microwave imagaiances, especially for cloudy observations
(Figure11).

Similarly, spatial observation error correlations candxend in Doppler radar winds as shown by ¥u
al (2007), at the NOAA (Figurd2).

5 Observation error correlation specification in the assimiation

Other observation errors show temporal correlations aS¥EOP ground stations. Since they espe-
cially need to be taken into account in a 4D-Var scheme, danét al (1999), at ECMWEF, proposed to
represent them by a simple exponential correlation functio

olts,t2) = aexp(—((t.—t2) /b)?), (13)
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Diagnostic C matrix: 4D-Var
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Figure 8: IASI inter-channel error correlations (from Staxt; University of Reading, 2010).

with b = 6h.

In the 4D-Var minimization used at ECMWF and at Météo-Frartbe current departures between ob-
servations and the state are normalized by the observationstandard-deviations:

z =S 1y’ — Hi(x*) — Hidx), (14)

where§ is the diagonal matrix containing the error variances ferabservation subset Then, thel®
term for a subset of observations is written as a simple spataduct of these normalized departures.
The way time-correlated observations are taken into addsuhen to compute what is called effective
departures,-eff by solving a linear systerrz,-e”C =z implying the above temporal correlation, and to
use these effective departures as for the uncorrelatedvalbisns.

Inter-channel correlations can also be relatively easikgh into account in an analysis scheme at least
in a 1D-Var scheme. This has been done, for instance, by @ateal (2007) at Environment Canada.
Figurel3shows the mean temperature and humidity increments forsendnle of 1D-Var analyses and
proves that taking into account those correlations realiikes a difference. The right pannel shows those
increments in observation space and it logically appeatsiticrements are smaller when inter-channel
correlations are represented for the water vapor chanffetded by those correlations.

The representation of spatial observation error coraiatis more complicated, especially in a varia-
tional formulation. Fisher and Radnoti (2006) proposed iamalemented an elegant representation of
such spatial correlations. It relies on a construction afuwase-root correlation model of correlations:

R=3'CzT, (15)

and
Ci=U;u/. (16)

The square-rodt; of the correlation matrixC; is constructed as a sequence of operators

Ui=TiS G’ (17)
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Figure 9: AIRS inter-channel error correlations (from Gaéet al, Environment Canada, 2007).

whereG; is the spectral (Hankel) transformation of the correlafiamction, § Lis the inverse spectral
transformation and; is an interpolation operator at observation locations.

It has to be pointed out that such a formulation is already vseful at this stage to represent realistic
observation perturbations in ensemble assimilation, ris$tance for SATWIND observations and even
if those correlations are not taken into account in the dtaion scheme itself. The code developed at
ECMWEF is thus used in ensemble assimilation as it has beeleimgmted at Météo-France (Begtal
2007) and at ECMWF (Isakseaat al 2010).

The representation of spatial correlationdRin® is a next step, again proposed by Fisher and Radnoti at
ECMWF (2006). It relies on an eigenpair decomposition ofriral;, using a Lanczos algorithm, and
on the use of a limited number of eigenpairs in the conswnabif the inverse of;:

Ci =21 (1/Aix — DVi Vg (18)

As for the time-correlated observations the practical anpntation of those spatially correlated obser-
vations relies on the computation of so-called effectivpadtures.

It is also interesting to introduce a discussion on the usabeérvations with correlated errors. Figure
14, produced by Liu and Rabier (2003), shows the impact of easien density on the quality of the
retrieved analysis. It shows that, if observation erroesuarcorrelated, then the use of denser and denser
observations always improves the precision of the analy§ia the contrary, if there is observation
correlation and if this correlation is not represented @édhalysis then the analysis will be degraded if the
observations are too dense and this degradation will staehwvasing observations with an interdistance
roughly equal to twice the lengthscale of observation datian. Another interesting and striking point

is that even if observation error correlation is well repraged in matrixR, then the precision of the
analysis will very quickly saturate when augmenting thesitgrof observations.

Figures15 and 16 show an illustration of such a behaviour, for a very simplalgsis framework, on
a circle, and this for two observation densities, 200 km add&®. In Figurel5, where there is no
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Figure 10: SATWIND spatial error correlations (from Bornraeat al, ECMWEF, 2003).

correlation in observation errors, it appears that theeiase of the density of observations brings the
analyis closer to the true state. This is also clear in thgelaeduction of the root mean square error of
the analysis when compared to the truth.

A different behaviour is found when there is correlation bservation errors (Figurg6). On the left
pannel, the interdistance between observations is rouglgl to twice the lengthscale of the correlation,
which is here equal to 100 km. In this case, there is no diffezebetween the errors of the optimal and
of the suboptimal analyses. On the contrary, if the denditybservations is increased, then the error in
the suboptimal analysis will be much increased, but actubk precision of the optimal analysis will
not be improved when compared to the precision of the arsalygh 4 times less observations. This
confirms the findings of Liu and Rabier (2002), at least in #irisple case.

6 Conclusion

Observation errors are not explicitely known. They can lieried by a comparison with other observa-
tions or with the background, using innovations.

There are diagnostics of observation errors (variancesamdlations), but relying on explicit or implicit
hypotheses.

Correlation of observation errors can be found in many éa$SYNOP time-correlations, AIRS, IASI
inter-channel correlations, SATWIND, SSM/I, radar spatiarrelations. Those correlations are often
neglected, but with an empirical thinning and/or an inflatad error variance. Correlations can be more
or less easily taken into account. A relevant formulationsfoatial error correlation has been proposed
and implemented in a real size system at ECMWF.

In any case, one has to keep in mind that correlated obsemgatire less informative than uncorrelated
observations, even iR is well specified. It may thus appear inefficient to add too yneorrelated
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Figure 11: SSM/I spatial error correlations (from Bormanied, ECMWEF, 2011).
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Figure 12: Doppler radar wind spatial error correlationsr@m Xu et al, NOAA, 2007).
observations.

Finally, the tuning ofR must be consistent with the tuning Bf in order to avoid inconsistencies in

assimilation schemes.
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