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Summary 

In this paper, a comprehensive assessment of the impact of radio occultation observations in the operational 
ECMWF assimilation and forecast system is presented using advanced diagnostic tools. In particular, the 
observation influence in the assimilation process and the related contribution on the short-range forecast error of 
radio occultation observations is evaluated with recently developed diagnostic tools based on the adjoint version 
of the assimilation and forecast model. The sensitivity with respect to observation error variances is also 
evaluated for the assimilated observations. The results indicate that a deflation of the error variances for all 
observation types but radiosonde and polar atmospheric motion vectors, would reduce the short range forecast 
error. In particular, a sensitivity analysis experiment with reduced error variance for radio occultation 
observations shows on average, a better fit with respect to aircraft and radiosonde measurements. 
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1. Introduction 

The ECMWF four-dimensional variational system (4D-Var, Rabier et al. 2000) handles a large 
variety of both space and surface-based meteorological observations (more than 30 million a day) and 
combines the observations with the prior (or background) information on the atmospheric state. A 
comprehensive linearized and non-linear forecast model is used, counting 108 the order of degrees of 
freedom. 

The assessment of the contribution of each observation to the analysis is among one of the most 
challenging diagnostics in data assimilation and numerical weather prediction. Methods have been 
derived to measure the observational influence in data assimilation schemes (Purser and Huang 1993, 
Cardinali et al. 2004, Chapnick et al. 2004, Lupu et al. 2011). These techniques show how the 
influence is assigned during the assimilation procedure, which partition is given to the observation 
and which is given to the background or pseudo-observation. They therefore provide an indication of 
the robustness of the fit between model and observations and allow some tuning of the weights 
assigned in the assimilation system. Measures of the observational influence are useful for 
understanding the Data Assimilation (DA) scheme itself: the influence of e.g. the latest data on the 
analysis, the influence of the background, the analysis change if one single influential observation is 
removed or the total amount of information extracted from the available data. 

It is therefore necessary to consider the diagnostic methods that have been developed for monitoring 
statistical multiple regression analyses; 4D-Var is, in fact, a special case of the Generalized Least 
Square (GLS) problem (Talagrand, 1997) for weighted regression thoroughly investigated in the 
statistical literature. 
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For the forecast, the assessment of the forecast performance can be achieved by adjoint-based 
observation sensitivity techniques that characterize the forecast impact of every measurement (Baker 
and Daley 2000, Langland and Baker 2004, Cardinali and Buizza, 2004, Morneau et al., 2006, Xu and 
Langlang, 2006, Cardinali 2009, Zhu and Gelaro 2009). The technique computes the variation in the 
forecast error due to the assimilated data. In particular, the forecast error is measured by a scalar 
function of the model parameters, namely wind, temperature, humidity and surface pressure that are 
more or less directly related to the observable quantities.  

In general, the adjoint methodology can be used to estimate the sensitivity measure with respect to 
any assimilation system parameter of importance. For example, Daescu (2008) derived a sensitivity 
equation of an unconstrained variational data assimilation system from the first-order necessary 
condition with respect to the main input parameters: observation, background, observation and 
background error covariance matrices. In particular, the sensitivity with respect the observation error 
variance offers guidance to variances tuning beneficial to short range forecast. 

A general description of the tools used is given in Section 2 on the observation influence, Section 3 on 
the observation impact in the forecast error and Section 4 on the sensitivity of the forecast error to the 
data error variance. Section 5 shows the observations performance on the ECMWF assimilation and 
forecast system and an assessment of the impact of GPS-RO (radio occultation) data is presented.  

2. Observational influence for DA scheme 

DA systems for NWP provide estimates of the atmospheric state x by combining meteorological 
observations y with prior (or background) information xb. A simple Bayesian Normal model provides 
the solution as the posterior expectation for x, given y and xb. The same solution can be achieved from 
a classical frequentist approach, based on a statistical linear analysis scheme providing the Best Linear 
Unbiased Estimate (Talagrand, 1997) of x, given y and xb. The optimal GLS solution to the analysis 
problem (see Lorenc, 1986) can be written 

 a n bx = Ky + (I - KH)x  2.1 

The vector xa is the ‘analysis’. The gain matrix K (n × p) takes into account the respective accuracies 
of the background vector xb and the observation vector y as defined by the n × n covariance matrix B 
and the p × p covariance matrix R, with 

 1 1 1 1T T− − − −K = (B + H R H) H R   2.2 

Here, H is a p × n matrix interpolating the background fields to the observation locations, and 
transforming the model variables to observed quantities (e.g. radiative transfer calculations 
transforming the models temperature, humidity and ozone into brightness temperatures as observed by 
several satellite instruments). In the 4D-Var context introduced below, H is defined to include also the 
propagation in time of the atmospheric state vector to the observation times using a forecast model. 

Substituting (2.2) into (2.1) and projecting the analysis estimate onto the observation space, the 
estimate becomes 
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ˆ a p b=y = Hx HKy + (I - HK)Hx  2.3 

It can be seen that the analysis state in observation space (Hxa) is defined as a sum of the background 
(in observation space, Hxb) and the observations y, weighted by the p × p square matrices I - HK and 
HK , respectively.  

In this case, for each unknown component of Hx, there are two data values: a real and a ‘pseudo’ 
observation. The additional term in (2.3) includes these pseudo-observations, representing prior 
knowledge provided by the observation-space background Hxb. The analysis sensitivity with respect 
to the observations is obtained (Cardinali et al 2004): 

 ŷS = = K H
y

T T∂
∂

 2.4 

The (projected) background influence is complementary to the observation influence. For example, if 
the self-sensitivity with respect to the ith observation is Sii, the sensitivity with respect the background 
projected onto the same variable, location and time will be simply 1-Sii.  

In particular, the observation influence Sii=[0,1] where Sii=0 means that the ith observation has had no 
influence at all in the analysis (only the background counted) and Sii=1 indicates that an entire degree 
of freedom has been devoted to fit that data point (the background has had no influence). The tr(S) 
can be interpreted as a measure of the amount of information extracted from the observation or 
‘degree of freedom for signal’ (DFS) whilst it follows that the complementary trace, tr(I−S)=p−tr(S), 
is the DF for background. That is the weight given to prior information, to be compared to the 
observational weight tr(S). Hereafter, the observation influence Sii is denoted as OI. In conclusion, the 
DFS is a function of the observation and the background covariance matrices and the model itself as a 
time-spatial propagator and the observations number. 

3. Forecast sensitivity to the observations 

Baker and Daley (2000) derived the forecast sensitivity equation with respect to the observations in 
the context of variational DA. Let us consider a scalar J-function of the forecast error. Then, the 
sensitivity of J with respect to the observations can be written using a simple derivative chain as: 

 
x

y x y
a

a

J J ∂∂ ∂
=

∂ ∂ ∂
 3.1 

aJ∂ ∂x  is the sensitivity of forecast error to initial condition xa (Rabier et al. 1996, Gelaro et al., 

1998) where the forecast error is expressed as dry energy norm. A few years ago, the use of moist 
norm instead of the dry one has been investigated (Barkmeijer et al 2001) and results have indicated 
that if a humidity term is considered in the final time norm, the largest norm contribution with respect 
to the initial analyzed fields was unrealistically provided by humidity rather than by vorticity, 
divergence or temperature fields. It was therefore necessary to apply an arbitrary tuning coefficient to 
diminish the effect. A full representation of the moist processes in the adjoint model is instead used 
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that appropriately links the sensitivity of the forecast error with respect to the initial humidity with the 
sensitivity with respect to the other fields e.g. temperature.  

From (2.1) the sensitivity of the analysis system with respect to the observations and the background 
can be derived from: 

 x = K
y

Ta∂
∂

 3.2 

By using (3.2) and (2.2) the forecast sensitivity to the observations becomes: 

 1 1 1 1( )K R H B H R H
y x x

T T

a a

J J J− − − −∂ ∂ ∂
= = +

∂ ∂ ∂
 3.3 

A second order sensitivity gradient needs to be considered in 3.3 (Langland and Baker 2004; Errico 
2007) because only superior orders than first contain the information related to the forecast error. In 
fact, the first order one only contains information on the sub-optimality of the assimilation system 
(Cardinali 2009).  

The variation δJ of the forecast error expressed by J can be found by rearranging (3.1) and by using 
the adjoint property for the linear operator: 

 

, , ( ) ,

, ,

x K y Hx K y Hx
x x x

K y y
x y

T
a b b

a a a

T

a

J J JJ

J J

δ δ

δ δ
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∂ ∂ ∂

∂ ∂
= =

∂ ∂

 3.5 

where a a bδ = −x x x  are the analysis increments and bδ =y y - Hx  is the innovation vector. The 

sensitivity gradient aJ∂ ∂x is valid at the starting time of the 4D-Var window (typically 09 and 21 

UTC for the 12h 4D-Var set-up used at ECMWF). As for K, its adjoint KT incorporates the temporal 
dimension, and the δy innovations are distributed over the 12-hour window. The variation of the 
forecast error due to a specific measurement can be summed up over time and space in different 
subsets to compute the average contribution of different component of the observing system to the 
forecast error. For example, the contribution of all AMSU-A satellite instruments, s, and channels, i, 
over time t will be:  

 s
AMSU A it

s S i channel
t T

J Jδ δ−
∈ ∈

∈

=∑ ∑  3.6 

The forecast error contribution can be gathered over different subsets that can represent a specific 
observation type, a specific vertical or horizontal domain, or a particular meteorological variable. In 
summary, the forecast error contribution to each measurement assimilated depends on the sensitivity 
to the forecast error with respect to the measurement (large absolute forecast error determines large 
absolute sensitivity); the adjoint of the assimilation system (which is affected by the background and 



CARDINALI AND HEALY: GPS-RO AT ECMWF 

ECMWF Seminar on Data assimilation for atmosphere and ocean, 6 - 9 September 2011 327 

the observations statistics as the model itself) and the innovation vector. When the measurements are 
gathered together, e.g. by instrument type, also the number will affect the observation impact.  

In practice, the forecast error is computed as the difference between the 24-hour forecast and the 
analysis valid at the same time. This implies that the verifying analysis is considered to be the truth. 
The following aspects should be kept in mind:  

• The verifying analysis is only a proxy of the truth and thus errors in the analysis can obscure 
problems in the short-range forecast. 

• Energy norm is a suitable choice because it directly depends on the most relevant model 
parameters, also contained in the control vector x. Nevertheless, alternative functions of 
model parameters can be used. 

4. Forecast sensitivity to the observation error variances 

Daescu (2008), Daescu and Todling (2010) and Daescu and Langland (2012) have shown how the 
forecast sensitivity to the observation error variance can be computed. In particular, the covariance 
matrices can be expressed by the parametric expression  

 .... .( ) ....., .( )B B R Rb o o
i i i is s s i I= = ∈  4.1 

where s denote the (I+1)-dimensional parameter vector of error covariance weights. The vector 

denoted s=1 is obtained by setting all parameter values to 1 and corresponds to the error covariance 

specification B and R. The forecast sensitivity to the observation weights at s=1 is then expressed as
 

 ( )H x y
y

T
i a io

i i

J J
s
∂ ∂

= −
∂ ∂

  4.2 

That is equivalent to  

 1( )Hx y R
R y

T
a

J J −∂ ∂
= −

∂ ∂
  4.3 

The formula above has been used to compute the ECMWF forecast sensitivity to the observation 

weights.  

5. Results 

Analysis and forecast experiments using the ECMWF 4D-Var system (Rabier et al 2000; Janiskova et 
al. 2002; Lopez and Moreau, 2005) have been performed for June 2011 to assess the observations 
impact on the analysis and the forecast. Figure 1a shows the DFS of all the observations assimilated. 
It can be seen that AMSU-A together with AIRS radiances are the most informative data type, 
providing 21% of the total observational information; AIRS follows with 16%. The information 
content of Aircraft (9%) is the largest among conventional observations, followed by TEMP 
(radiosonde) and the in situ surface pressure SYNOP observations (~4%). Noticeable is the 7% of 
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GPS-RO (4th in the satellite DFS ranking). In general, the importance of the observations as defined 
by the DFS well agrees with the recent data impact studies by Radnoti et al, (2010). 

The 24-hour forecast error contribution (FEC) of all the observing system components is shown in 
Fig. 1b. The largest contribution in decreasing the forecast error is provided by AMSU-A (~21%); 
IASI, AIRS, GPS-RO and AIREP provide 10% of the forecast error reduction followed by TEMP and 
SYNOP data (5%). All the other observations contribute up to 3%. AMV observations from all the 
different platforms (MODIS, Meteosat and GOES) also well contribute to the 24 hour error reduction 
(6%). 

Comparing Fig. 1a with Fig. 1b is clear that the impact of the observations (by observation type) on 
the analysis (DFS) is quite similar to their impact on the forecast as measured by the forecast error 
(FEC) reduction. Both measures depend on the transpose Kalman gain matrix KT, FEC also depends 
on the forecast error and on the innovation vector. The amount of error reduction is modulated by the 
percentage of forecast error that projects on KT. For some observation types the DFS is larger than the 
reduction of the forecast error. The impact loss, noticed for some observation type e.g. IASI and 
AIRS, can depend on the observation quality or can be due to biases in the model that will prevent the 
analysis changes to affect the short-range forecast which will reflect on the 24 hour forecast error 
increase. 

In Figure 1c, the sensitivity with respect to the observations error variance is shown for the same 
observation types. The positive sensitivities indicate that error variance deflation should be beneficial 
to reduce the 24 hour forecast error whilst inflation should be applied on observation error variance 
with negative sensitivity. According to Fig. 1c all the variances should be deflated a part for TEMP 
and AMV from MODIS and Meteosat. The complementary information from Fig. 1c is that the model 
error variances are in general too small and their inflation should be beneficial to the short range 
forecast. 

In the ECMWF system, GPS-RO provides the 7% of DFS (Fig1a) and 10% of forecast reduction (Fig 
1b). The GPS-RO measurements mainly provide temperature information in the upper-troposphere 
and lower/middle stratosphere. They are assimilated as bending angles, α , as a function impact 
parameter, a , which is a height co-ordinate, using the one dimensional observation operator 
described by Healy and Thépaut (2006). The GPS-RO measurements complement the information 
provided by satellite radiances because they have superior vertical resolution, and they can be 
assimilated without bias correction to the NWP model. The assumed GPS-RO observation errors used 
in the assimilation of the data at ECMWF vary as a function of impact height, z , which is defined as 
(impact parameter minus the “radius of curvature”), where the radius of curvature is radius of the best 
spherical fit to the earth at the location of the observation. The assumed standard deviation of the 
bending angle errors, ),(zασ  is 20 % of the observed value at z = 0 km impact height, falling 

linearly with impact height to 1 % at 10 km. Above 10 km, the errors are assumed to be 1 % of the 
observed value, until this reaches a lower limit of 3 microradians. Given the high observation 
accuracy, the mean GPS-RO observation influence in the analysis is also high, contributing for half to 
the DFS, the other half contribution comes from the relatively high number assimilated.  
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Figure 1: Total amount of a) DFS, b)FEC and c) FSR for the June 2011 and for all observation 
types assimilated 

 
 

Figure 2 shows the mean Observation Influence (OI) (Fig. 2a) of GPS-RO data with respect to the 
vertical level measured in kilometres (2-50 km). The largest OI is over the troposphere and the low 
stratosphere where is also observed the largest forecast error reduction. The number of measurement 
per level is the same. 

The GPS-RO OI (Fig. 2a) profiles are consistent with the earlier 1D-Var information content studies 
(e.g., Healy and Eyre, 2000), and reflect the large weight given to the observations between ~ 10 – 30 
km.  The largest forecast error reduction is also observed between 10 and 30 km (Fig. 2b). Figure 2c 
shows GPS-RO observations sensitivity to the observation error variance. Generally, a deflation of the 
variances is suggested for all vertical levels and in particular between 10 and 30 km. It is interesting to 
note that the FSR computation suggests reducing the assumed errors mostly in the layer where the 
weight given to the GPS-RO is already very large.  
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Figure 2: a) mean observation influence (OI), b) total FEC and c) FSR for June 2011 and for 
GPS-RO observations as a function of vertical levels  

 

Figure 3 shows the geographical distribution of the forecast error reduction due to GPS-RO data 
(Fig.3a) and the forecast sensitivity to the GPS-RO observation error variance (Fig. 3b) averaged 
between 12 and 20 km and for June 2011. 

The average mean forecast impact of GPS-RO is larger over the Tropics area than in the extra-tropic 
(Fig 3a blue contour) but in general, a part few areas of degradation close to the poles, the GPS-RO 
observations decrease the 24 hour forecast error everywhere. As can be seen from Fig.3b, the largest 
signal for observation error variance reduction is also in the tropical area (yellow-red contours). 

An analysis sensitivity experiment Half_Sigma has been performed by reducing the GPS-RO error 
variance. In particular, the GPS-RO error variance deflation profile suggested by the FSR 
computation was approximated with the analytical expression 

 1 1( ) ( ) ( exp( ( ) / exp( ( ) / ))m mz z z z H z z Hα ασ σ γ∗ = × − − − − − − ,  

where km15=mz and .km5.2=H  The parameter γ was set to 0.5 for the 50 % reduction in the 

errors.  
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Figure 3: GPS-RO a) mean FEC and b) mean FSR for June 2011 from 12 to 30 km. (a) Positive 
(negative) values mean increase (decrease) of forecast error. (b) Positive (negative) values mean 
that  deflation (inflation) of the observation error variances would decrease the 24 hour forecast 
error. 

 

The performance of Half_Sigma has been compared with the performance of the control (CNTR) 
experiment which contains the operational assigned variances ( )a zσ . The performance has been 

measured in term of observation fit. Figure 4 shows the mean forecast differences with respect to 
radiosonde observations of 24 (solid line) and 48 (dot line) hour forecast range for CNTR (black) and 
Half_Sigma (red) for June 2011 and for the u-component (left panel), v-component (middle panel) 
and t (right panel) 

Half_Sigma indicates a mean improvement with respect to the radiosonde fit especially for the 48 
hour forecast range at every level. The best improvement is noticed in the high troposphere and  lower 
stratosphere and for the u and v component. When the experiments are compared with the aircraft 
observations a larger fit reduction is noticed in Half_Sigma than in CNTR for the 48 hour range 
forecast in the troposphere for the u component of the wind in the Tropics (Fig 5a) and the Southern 
Hemisphere (Fig 5b).  
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Figure 4: Mean forecast differences with respect to radiosonde observations of 24 (solid line) and 48 
(dot line) hour forecast range for CNTR (black) and Half_Sigma (red) for June 2011 and for the u-
component ((a left panel), v-component ((b) middle panel) and t ((c) right panel) in the Northern 
Hemisphere. 

 

 

 
Figure 5: Mean forecast differences with respect to radiosonde observations of 24 (solid line) and 
48 (dot line) hour forecast range for CNTR (black) and Half_Sigma (red) for June 2011 and for 
the u-component in the Tropics (top panel) and Southern Hemisphere (right panel) 
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6. Conclusions 

Over the last few years, the potential of using derived adjoint-based diagnostic tools has been 
increasingly exploited.  

The influence matrix is a well-known concept in multi-variate linear regression, where it is used to 
identify influential data and to predict the impact on the initial condition estimates of removing 
individual data from the regression. The self-sensitivity provides a quantitative measure of the 
observation influence in the analysis. In the context of 4D-Var there are many components that 
together determine the influence given to any one particular observation. First there is the specified 
observation error covariance R, which is obtained simply from tabulated values. Second, there is the 
background error covariance B, and third, the dynamics and the physics of the forecast model which 
propagate the covariance in time, and modify it according to local error growth in the prediction. The 
total influence is further modulated by data density.  

Forecast sensitivity to observations can be used to diagnose the impact on the short-range forecast, 
namely 24 to 48 hours, given the use of a simplified adjoint of the data assimilation (DA) system and 
the implied linearity assumption. Forecast error contribution maps allow the geographical 
identification of beneficial or detrimental observation impact and a clear understanding of the causes 
can be drawn by the help of observing system experiment (OSE) in which the data of interest are 
denied. In general, OSEs are also used to investigate forecast data impact on a longer range forecast, 
typically 5 days.  

The global impact of observations is found to be positive and the forecast errors decrease for all data 
types. The largest contribution in the analysis as measured by the DFS and in the forecast as measured 
by FEC is provided by microwave sounder radiances (AMSU-A) followed by the infrared sounder 
radiances (IASI and AIRS) from the instruments that mainly provide information on temperature and 
humidity. For microwave satellite humidity information, SSMIS (microwave imager), MHS 
(microwave sounder) and AMSR-E (microwave imager) instruments are in this order contributing to 
forecast error decrease. For conventional observations Aircraft and Temp provide the largest 
contribution. The forecast sensitivity to the observation variance suggests that if the observation error 
variances for all observation type, but Temp and AMV, are deflated, the 24 hour forecast error will 
reduce. 

The 5th largest impact either in the analysis or in the forecast is provided by GPS-RO data. The 
largest contribution comes from the vertical levels between 12 and 20 km. The forecast sensitivity to 
the observation error variances also suggests that the GPS-RO weights should be deflated to reduce 
the forecast error. Interestingly, the suggested reduced variances are mostly in the layer where the 
weight given to the GPS-RO is already quite large. A first attempt to decrease the GPS-RO 
observation error variances has been made and some improvement in terms of observation fit has been 
noticed. Anyhow, more work is envisaged to properly tune the variances for GPS-RO and in general 
for all the other observation types. 
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