Stochastic Physics and Reliable
Seasonal Prediction

T.N.Palmer
University of Oxford
ECMWF



How good are medium-range forecasts
now? (on a scale of 1-5)?

How good will they be in 30 years time?
(on a scale of 1-5)7?

How good are seasonal forecasts now?
(on a scale of 1-5)?

How good will they be in 30 years time?
(on a scale of 1-5)7?



e What does “5 = very good” mean? To the
public, if a forecast is “very good” it means
that it is right roughly 95% of the time.

* Clearly seasonal forecasts do not have that
level of skill now.

Do our current medium-range forecasts have
high skill by this measure?






Results are from the operational high-resolution run for Europe (W: -12.5, N: 75, E: 42.5, S:
35), forecast day 5 ( = precipitation from +96 to +120 h). The average number of available

stations is ~1520.

a. Results for summer (JJA 2011)

iv) Threshold=10 mm

OBS yes OBS no
FCST yes | 3703 7694
FCSTno | 7982 120412

Thomas Haiden,
personal
communication

On about 70% of the occasions when the day 4-5 ECMWEF high-res
forecast said it would rain at least 10mm/day, it didn’t!

No wonder the public complain about traditional deterministic weather
forecasts - from this perspective they are very unreliable.



The ECMWEF Ensemble Prediction System
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Beyond the medium
range, precip
forecasts start to
loose reliability

ECMWF Monthly Forecast, Precip in upper tercile
Day 12-18 20041007-20120705
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And on the seasonal
timescale they can

Northern Europe

be rather poor

ENSEMBLES terciles dry JUJA NEU
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ENSEMBLES terciles wetJJA NEU
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..but not for all

regions
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ENSEMBLES
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ENSEMBLES terciles dry JUA SEA
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User Imerface
Programme

WCC-3

Climate Services
Information System

Research Observations
and and
modelling monitoring

It is essential for the development of Climate Services, that our
climate forecast systems are reliable.



PREC(lh) Summer 2011 00UTC Unreliability also a problem for
short range forecasts of intense
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COSMO-DE-EPS verification
results
March 2012



How good will medium range and seasonal forecasts be
in 30 years time?

* Not 95% right’. That is both unrealistic and inconsistent with
the laws of physics.

e Rather, we should aspire to perfect reliability, ie

from a subset of cases where the forecast predicts a 95% (more
generally p%) chance eg of:
— An intense convective storm over Reading in the next 12 hours

— The development of a blocking anticyclone over Northern Europe
in 2 weeks time

— A BBQ summer in the UK or a severe drought in Kenya in the
coming season
then the event will have happened 95% (more generally p%) of
the time.



Theories of physics should be as simple as possible, but
no simpler



Forecasts of weather should be as sharp as possible, but
no sharper



Traditional computational ansatz for weather/climate
simulators

Eg momentum“transport” by: Deterministic local

bulk-formula
parametrisation

Turbulent eddies in
boundary layer

Orographic gravity wave
drag.

Convective clouds



Deterministic bulk-formula parametrisation is
based on the notion of averaging over some
putative ensemble of sub-grid processes in

quasi-equilibrium with the resolved flow (eg

Arakawa and Schubert, 1974)
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Stochastic Parametrisation

* Provides the sub-grid tendency associated with a
potential realisation of the sub-grid flow, not the
tendency associated with an ensemble average of sub-
grid processes.

 Can incorporate physical processes (eg energy
backscatter) not described in conventional
parametrisations.

« Parametrisation development can be informed by
coarse-graining budget analyses of very high
resolution (eg cloud resolving) models.
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Experiments with the Lorenz ‘96 System (ii

dX
k __
dt — _Xk—l (Xk—z_xk+l) B
de b ( )
\ Better RPSS
Forecast Skill
0.62} / -
0.6t P ]
-
0.58} I,
2 /f
T 056} 7
0.54} fgf
‘ss"
0.52} / ]
3 Arnold et al, Phil Trans Roy Soc
o5 & :

Deterministic

White Additive AR1 Additive

Multiplicative

Assume Y
unresolved

Approximate
sub-grid
tendency by U

Deterministic:

U= Udet

Additive: U=Uge + €y,

Multiplicative: U =(1+e,) U,

Where:
Ut = cubic polynomial in X
e, = white / red noise

Fit parameters from full model
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Brier Skill Score: ENSEMBLES MME vs ECMWF

stochastic physics ensemble (SPE)

lead time: 1 month

T2m

precip

May

Nov

May

Nov

cold

warm

cold

warm

dry

wet

dry

wet

MME

0.178

0.195

0.141

0.159

0.085

0.079

0.080

0.099

SPE

0.194

0.192

0.149

0.172

0.104

0.118

0.095

0.114

CTRL

0.147

0.148

0.126

0.148

0.044

0.061

0.058

0.075

Hindcast period: 1991-2005

SP version 1055m007

Weisheimer et al GRL (2011)




System 4 is underdispersive in ocean variables

Ensemble Error

Ensemble Spread

Mirek Andrejczuk. Personal communication



NEMO Equations

OV [(VxU)XU+ LV (U] ~f kXU, — LV, p+(14 7)) DY+ F

8[ 2 h pO

aa—T=—V(TU)+(1+rT)DT+FT

t Spatial correlations as in Buizza et al (1999)
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Effects of stochastic ice strength perturbation on

Arctic finite element sea ice modelling
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The ice strength parameter P* is a key parameter in dynamic-thermodynamic
sea ice models.

Controls the threshold for plastic deformation. Value affected by the liquid
content in the sea ice. Cannot be measured directly.

A stochastic representation of P* is developed in a finite element sea-ice-ocean
model, based on AR1 multiplicative noise and spatial autocorrelation between
nodes of the finite element grid

Despite symmetric perturbations, the stochastic scheme leads to a substantial
increase in sea ice volume and mean thickness

An ensemble of eight perturbed simulations generates a spread in the multiyear
ice comparable with interannual variability in the model.

Results cannot be reproduced by a simple constant global modification to P*

: 5N . S‘ Impact of different
| | ' | versions of stochastic P*
d) e) 3 with respect to a
g 2 == reference run. Top: Sea
: | i | o 'l"'-' | ice thickness. Bottom:
; o o ,;’“* | sea ice concentration.
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A skilful stochastic model cannot be
obtained from a tuned deterministic
model with bolt-on stochastics.

Cuarserty Jnwsrnal of the Raval Meteorological Society 1 R Mefarot, Soc

Towards the probabilistic Earth-system simulator: a vision for
the future of climate and weather prediction’

T. N, Palmer*5*

niversity of Oford, UK
Reading, UK
Farks Rozdl, Onxford 0X1 3PU.

*Correspandence

c. Oceanic and Planetary Phy
maik: tn.palmerd
Tased an the 2011 Royal Meteorolo

sidential Address

There is no more challenging problem In computational science than that of
estimating, as accurately as science and technology allows, the future evolution of
Earth’s clinsate; nor indeed is there a problem whose solution has such importance
and urgency. Historically, the simulation twols needed to predict dimate have
been developed, somewhat independently, at o number of weather and climate
institutes around the wozld. While these simulators are individually deterministic,
it Is often assumed that the resulting diversity provides & useful quantification
of uncertainty in globel or regional predictions. However, this notion is not well
founded theoretically and ding ‘multi-simulator’ estimates of i
can be prone to systemic failure. Separate to this, Individual institutes are now
facing considerable challenges in finding the human and computational resources
needed to develop mere accurate weather and climate simulators with higher
resolution and full Earth-system complexity. A new approach, originally designed to
improve reliability in ensemble-based numerical weather prediction, is introduced
to help solve these twe rather different problems. Using stochastic mathematics,
this approach recopnizes uncertainty explicitly In the parametrized representation
of unresolved dimatic processes. Stochastic parametsization is shown to be more
consistent with the underlying equations of motion and, morcaver, provides more
skilful estimates of uncertainty when compared with estimates frons traditional
multi-simulator ensembles, on time-scales whese verification data exist. Stochastic
parametrization can also help reduce long-term biases which have bedevilled
numerical simulations of climate from the carliest days to the present. As a recult,
it is suggested that the need to maintain a large ‘gene poal’ of quasi-independent
deterministic simulators may be obviated by the development of probabilistic
Earth-system simulators. Consisteat with the conclusions of the World Summit on
Climate Modelling, this in turn implies that individual institutes will be able to pool
human and resources in future-generat
th ftting from economies of scale; th fthe Airbus consortium
provides a useful analogy here. As a further stimulus for such evolution, discussion
is given to a potential new synergy between the development of dynamical cores,
and stochastic processing hardware. However, It is concluded that the traditional
challenge in numerical weather prediction, of reducing deterministic measures of
forecast exror, may increasingly become an obstacle to the seamless development of
ilistic weather and climate si P ical as that may appear at first
sight. Indeed, going further, it is argued that it may be time to consider focusing
perational weather forecast o entirely on high-resolution ensemble

£ 2012 Hoyal Meteamlogical Sociry




Spectral Dynamical Core
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There are good reasons for wanting to go to
convectively resolved models, not just for
short-range mesoscale prediction, but for

seasonal and longer timescale climate
prediction too (Shukla et al, 2010).

This will probably have to wait for exaflop
computing.



EJ Public Sector

Home > Public Sector > News

Europe to double
funding for exascale
» computing

‘x.‘ China and Europe outpacing US funding for HPC

By FPatrick Thibodeau | Computerworld US | Published 13:16, 21 February 12

The European Commission last week said it is doubling its investment in the push for exascale
computing from €630 million to €1.2 billion (£1 billion). The announcement comes even as European
governments are imposing austerity measures to prevent defaults.

But exascale systems "pose numerous hard challenges,” said the European
Commission in a report that accompanied its funding announcements. The
challenges include a 100-fold reduction in energy consumption along with
development of new programming models. As Europe sees it, solving these
challenges creates opportunity for Europe, China and others looking to take
on US HPC dominance.



Will bit-reproducible computation
continue to be a sine qua non in HPC?

In a recent presentation on Challenges in Application Scaling in an Exascale
Environment, IBM’s Chief Engineer for HPC, Don Grice, noted that:

“Increasingly there will be a tension between energy efficiency and error
detection”,

and asked whether :

“...there needs to be a new software construct which identifies critical
sections of code where the right answer must be produced” — implying that
outside these critical sections errors can (in some probabilistic sense) be
tolerated.

(http://lwww.ecmwf.int/ newsevents/meetings/workshops/2010/high
performance computing 14th/index.html)



Stochastic Parametrisation

n==Inmn In=Imn

Triangular
Truncation
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Can this fact be used as a way to overcome the exascale energy
barrier and get to reliable convectively resolved global models
much quicker than would otherwise be possible?



Superefficient inexact chips

http://news.rice.edu/2012/05/17/computing-experts-unveil-superefficient-inexact-chip/

1177

& In terms of speed, energy
R L consumption and size,

8- inexact computer chips like
% this prototype, are about 15
33 times more efficient than
today's microchips.

YV N
IBEREE
bt 1 AR
o Y ¥

Krishna Palem.
Rice, NTU
Singapore

This comparison shows frames produced with video- processmg software on tradltlonal processing elements (left),
inexact processing hardware with a relative error of 0.54 percent (middle) and with a relative error of 7.58 percent
(right). The inexact chips are smaller, faster and consume less energy. The chip that produced the frame with the
most errors (right) is about 15 times more efficient in terms of speed, space and energy than the chip that
produced the pristine image (left).



Blue Skies Research: Towards the
Stochastic Dynamical Core

Stochastic Parametrisation

=

n=-im n=im

Triangular '
Truncation
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At Oxford we are beginning to work with IBM Zurich to
develop these ideas...

Efficiency/speed/inexa
ctness of chip

Y

and precision at which
the data is stored and
passed between
processors.



Experiments with the Lorenz ‘96 System

dX

dtk = =Xy (Xk—z _Xk+1) Xe+ F— — ZY
j=J (k—1)+k

dY. hc

dt = _Cij+1( Yoo _Yj—l) — CY; + innt[(j—l)/nl]

15

== Truth using bit-reproducible chip
- Estimates using probabilistic chip

Hannah Arnold and Hugh
McNamara, Personal
Communication

A route to reliable cloud
resolved climate
models?

-10




30 Years Ago

Dynamics Parametrisation

O(100km
)



Now

Dynamics Parametrisation




In 30 years

Dynamics Parametrisation




TWO TIME SCALES FOR THE
PRICE OF ONE (ALMOST)

B Lisa Goobarp, James W. HurreL, Benjarin P. KIRTMAN, James MurpHY,
TIMOTHY STOCKDALE, AND CAROLINA VERA

Although differences exist between seasonal- and decadal-scale climate variability,

predictability, and prediction, investment in observations, prediction systems, and decision

systems for either time scale can benefit both.

W hile some might call Decadal Prediction
the new kid on the block, it would be better
to consider it the latest addition to the
Climate Prediction family. Decadal Prediction is
the fascinating baby that all wish to talk about, with
such great expectations for what she might someday
accomplish. Her older brother, Seasonal Prediction,
is now less talked about by funding agencies and the

seem mature enough to take care of himself, but in
reality he is still just an adolescent and has yet to reach
his full potential. Much of what he has learned so far,
however, can be passed to his baby sister. Decadal
could grow up faster than Seasonal did because she
has the benefit of her older brother’s experiences.
They have similar needs and participate in similar
activities, and thus to the extent that they can learn
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A Nonlinear Perspective on Climate Chang
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MRI-AGCM3.2 probability of dry JJA (2075—2099, Mediterranean Basin)
(b)TL95L64(4—member, calibrated)

Calibrated using ENSEMBLES
reliability regression lines

(c)TL959L64
EUROSIP Pcalib=0.4019Praw+0.1993(=0.8)

RMSD(TL959 and TL95raw): 0.1916
RMSD(TL959 and TL95calibrated): 0.1242
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Percentage of Giogi regions
where some calibration
improves climate-change score
DJF dry 76%
DJF wet 85%
JJA dry 95%
JJA wet 100%




Conclusions

A primary goal for 30 years time is for the direct model output
from forecasts on all time ranges — days to seasons and longer
- whilst being as sharp as possible, to be reliable.

e The computational representation of the equations of
weather and climate is a key source of uncertainty for
forecasts.

 Finding reliable representations of model uncertainty must be
a core component of research into model development, as we
move to higher and higher resolution.
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