# The Predictability of Arctic Sea Ice on seasonal to interannual timescales

by Cecilia Bitz and Eduardo Blanchard-Wrigglesworth Atmospheric Sciences University of Washington

> Thanks to Marika Holland, NCAR, Kyle Armour, UW, and Eric DeWeaver, NSF



The latest date in 2012 is: 08/29



#### STUDY OF ENVIRONMENTAL ARCTIC CHANGE

| SEARCH Science       | Sea Ice Outlook   Monthly Reports                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEARCH Projects      | Sea ICE Outlook   Monthly Reports                                                                                                                                                                                                                                                                                                                                                                                               |
| Sea Ice Outlook      | Overview Report Schedule Community Forum Organizers Relevant Links                                                                                                                                                                                                                                                                                                                                                              |
| AON                  | Monthly Reports: May   June                                                                                                                                                                                                                                                                                                                                                                                                     |
| Resources            |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Meetings             | June Report: Outlook Based on June Data                                                                                                                                                                                                                                                                                                                                                                                         |
| Science Coordination | Report Released 16 July 2008                                                                                                                                                                                                                                                                                                                                                                                                    |
| International SEARCH |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ISAC                 | Summary Full Report                                                                                                                                                                                                                                                                                                                                                                                                             |
| DAMOCLES             |                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Contact Information  | SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Home                 | The outlook for the pan-arctic sea ice extent in September 2008, based on June data, indicates a continuation of<br>dramatic sea ice loss. The June Sea Ice Outlook report is based on a synthesis of 17 individual projections,<br>utilizing a range of methods. Projections based on June data are similar to those of the May report, with no<br>indication that a return to historical sea ice extent will occur this year. |

SEARCH Science

SEARCH Projects Sea Ice Outlook

Science Coordina International SEA

Contact Informat

AON

Resources

ISAC DAMOCLES

Home

Meetings

#### **STUDY OF ENVIRONMENTAL ARCTIC CHANGE**

#### Sea Ice Outlook | Monthly Reports

Overview Report Schedule Community Forum Organizers Relevant Links

Monthly Reports: May | June

#### June Report: Outlook Based on June Data



2012 Sea Ice Outlook: June Report

SEARCH Science

SEARCH Projects Sea Ice Outlook

Science Coordina International SEA

Contact Informat

Observed

AON

Resources

ISAC DAMOCLES

Home

Meetings

#### **STUDY OF ENVIRONMENTAL ARCTIC CHANGE**

#### Sea Ice Outlook | Monthly Reports

Overview Report Schedule Community Forum Organizers Relevant Links

Monthly Reports: May | June

#### June Report: Outlook Based on June Data



2012 Sea Ice Outlook: June Report











## Arctic - In winter (about 9 months)



Sea ice grows when the ocean cools to the freezing point. This happens very quickly in the absence of sunlight, wherever the ocean heat transport cannot keep pace.

Growth is inversely proportionate to thickness, so thin ice grows very fast, a strong negative feedback

#### Arctic - In summer (about 3 months)



Ice melts at top and bottom total rate of ~2 cm/day

Positive ice-albedo feedback as the ice retreats

CCSM3 – A1B Scenario



Trend and Interannual variability is well represented in some models note occasional decade of little change Holland et al 2006, 2008 Polar Amplification occurs only in winter, although the positive ice-albedo feedback occurs only in summer



IPCC AR4 Fig 10.9



Two ways to study predictability of sea ice

1) Diagnostic analysis of sea ice

Blanchard-Wrigglesworth, Armour, Bitz, and DeWeaver, 2011, Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations.

2) Ensembles of initialized predictability runs from perturbing atmosphere

Blanchard-Wrigglesworth, Bitz, and Holland, 2011: Influence of Initial Conditions and Climate Forcing on Predicting Arctic Sea Ice



Use CCSM3 & and CCSM4

## **Diagnostic predictability**

## Lagged Correlation of pan-Arctic Sea Ice Area for 900 Years



## Sea ice Area Climatology in 10<sup>6</sup> km<sup>2</sup>



#### Lagged Correlation of pan-Arctic Sea Ice area



Model Mean Observations 30-yr chunks from the model

## Lagged Correlation of Arctic Sea Ice area



# Prognostic Predictability "Perfect Model" Studies





**Prediction Run Details** 

60 Ensemble members for each initial conditions start date (2 start times = 120 total runs)

Initial conditions from 6 members of 20<sup>th</sup> century historical runs near year 2000, make 6 "subsets" of the ensemble for each start date

Perturbed using adjacent days in atmosphere, same sea ice, ocean, land in each "subset"

Runs are 2-5 years long

CCSM4 at 1° resolution



**Ensemble starting January 2001** 



6 ensemble members of 20<sup>th</sup> Century run

Issue 2: Seasonal Cycle in Area Anomaly



6 ensemble members of 20<sup>th</sup> Century run

Sea ice is predictable due to

- 1) Persistence of thickness and SST (under advection)
- 2) Dependence of area on thickness in summer and ocean heat
- 3) Response to climate forcing



Branstator and Teng (2010) Two limits of Initial Value Predictability in a GCM (I flipped their figure)



RMSD = rms of differences of all combinations of runs



Initialized Ensemble on September 2000 Baseline from detrended 20<sup>th</sup> Century Runs AR1 model estimate (only right for summer)

#### Correlation between Area and Volume by Month





Equally good summer forecast from prior September or January

"Barrier" to volume predictability in spring



### **Relative Entropy**

$$RE = \int p_c(x) \ln \left(\frac{p_c(x)}{p_e(x)}\right) dx$$



Measuring dynamical prediction utility using relative entropy, Kleeman (2002) and Information theory and predictability for low-frequency variability, Abramov, Majda, Kleeman (2005)



Is there any hope of predicting spatial patterns?

#### **Concentration Predictability in October**



Blanchard-Wrigglesworth (in prep)

Initialized in July

## Standard Deviation of Sea Ice Thickness



## Standard Deviation of Sea Ice Thickness



1 month Lead Time

Initialized in May


2 month Lead Time



3 month Lead Time



4 month Lead Time



5 month Lead Time



6 month Lead Time



12 month Lead Time



18 month Lead Time



23 month Lead Time



#### **Thickness Predictability in September**



#### **Thickness Predictability in September**



Initialized in September

Thickness Predictability for year 2 – A Spatial Evaluation



Koenigk and Mikolajewicz (2009)

Initialized in January

































increases time by ~50%

# $\sigma_{control}$ Standard Deviation of Surface Temperature in 1995-2005 of 20<sup>th</sup> century runs



# Standard Deviation of Surface Temperature in October



# Standard Deviation of Ice Area (10<sup>6</sup> km<sup>2</sup>) in the 20<sup>th</sup> Century "Control" for 1995-2005

Sep







Potential collaborations/networks

WWRP/THORPEX POLAR PREDICTION PROJECT – Thomas Jung

WCRP polar climate predictability initiative – Ted Shepherd

CanSISE – Paul Kushnir

Sea ice outlook network (?) – Hajo Eicken, me

Some challenges

A ocean-ice model with sea ice data assimilation forced with atmospheric reanalysis (referred to as "other" model)



dark red/blue =  $+/- \sim 1m$ 

# CCSM4



#### Some observations from watching these animations

The other model (with data assimilation) looks strange

The GCM anomlies are about twice as big in magnitude but half the spatial extent

The same ice-ocean components as the GCM forced with reanalysis "hindcast" has circulating anomalies like the GCM, but magnitude is small (as in other model with data assimilation)

standard deviation of sea ice thickness (m)





How can we make better real forecasts?

Does the strong seasonality of sea ice processes inhibit error correction?

Can we improve the models/assimilation so we don't have to error correct so much?

We need thickness or something like it (can we use sea ice age from passive microwave)?

Can we use laser altimetry thickness from 2 months prior to forecast start? (beware that it only has been around, and with gaps, since 2001)

# Part 1 Summary

Arctic sea ice area month-to-month persistence (decorrelation timescale) of 3-5 months, depending on the reference month

Arctic sea ice area re-emergence mechanism

Spring to Fall re-emergence is due to SST, seen in model and observations

Summer to Summer is due to thickness, only seen in model



FAJAODFAJAO

Re-emergence mechanism modulates seasonal cycle of initial decorrelation times. Longest persistence after July.

Most predictable month of pan-Arctic area one-year later is September, can explain at least 20% of the variance starting a year in advance, raises to 70% one month in advance. Part 2 Summary



In prognostic, perfect-model study

Pan-Arctic sea ice area is intermittently predictable for several years

Volume is predictable for 3-4 years, couples to area

Climate forcing overwhelms initial condition predictability at about ~3 years

Summer predictions begun the prior September equal those begun in January

Partial barrier to predictability in spring from ice-albedo feedback

# Part 3 Summary

Spatially – concentrations is most predictable near Siberia, thickness has long-lived predictability throughout the Arctic basin (though seasonally varying)

One-point lagged correlation maps tell us

Thickness anomalies decay much more slowly when we account for mean transport

Where to observe

