Convection and the Tropics

Meteosat 9 IR10.8 20120220 15 UTC

ECMWF oper Fc 20120220 00 UTC+15h:

Peter Bechtold

with help from:

P. Bauer, P. Berrisford, J. Bidlot, C. Cardinali., T. Haiden, L. Hirons, M. Janousek, D. Klocke, L. Magnusson, A. McNally, J-J. Morcrette, S. Malardel, F. Prates, M. Rodwell, I. Sandu., N. Semane, F. Vitart and discussions with many colleagues

What to expect

- Convective heating available energy waves
- Regions with major forecast errors and uncertainty in the analysis
- Convection and seasonal forecasts: Mean state, diurnal cycle, tele-connections and the QBO
- The MJO, why better now
- The small planet, studying a future high-resolution system

Tropical T and U tendency budgets

Normalized convective and stratiform heating profiles

Some statistical properties of convection: Pdfs of instant. Rain rates

SSMI is from 1D-Var

Some statistical properties of convection: Pdfs of mass fluxes T159 & T1279

From theory expect exponential Pdf of mass flux, Cohen and Craig (2006)

Entrainment rates versus CRM (UKMO)

See also deRooy (QJ 2012)

Derbyshire et al. (QJ 2011)

The global Lorenz Energy cycle

Generation Conversion

$$\frac{da}{dt} = NQ + \alpha\omega = NQ + \overline{\alpha}\overline{\omega} + \overline{\alpha}\overline{\omega}'$$

$$\frac{1}{2} = \frac{1}{2} \frac{1}{2}$$

$$\overline{\alpha'\omega'} = \frac{R}{P} [1 + (\varepsilon^{-1} - 1)] \overline{T'\omega'} + (\varepsilon^{-1} - 1) \overline{\alpha} \overline{q'\omega'}$$

Generation rates

Total Generation rate (W/kg)

Generation rate - radiation

- Generation rates maximum in upper tropical troposphere
- Radiation does not contribute to the conversion rates but to the generation rate, but even there has only at poles a positive contribution (cooling at cold places) but globally a negative contribution (as in Tropics it is cooling where it is warm)

Steinheimer et al. 2008, Tellus

Conversion rates and convection

Grid-scale conversion rate (W/kg)

Grid-scale has positive and negative contributions to kinetic energy conversion rate, maximum in upper-tropical troposphere

Convection so important because contribution always positive!

Shallow water system and linear waves

$$\boxed{V=0} \Rightarrow U=U_0e^{-y^2/2}e^{ik(x-ct)} \quad G(z,m) \qquad \text{Kelvin wave, geostrophic} \\ c=\frac{\omega}{k}=\sqrt{gh} \\ 2y \\ 4y^2-1 \\ \vdots \\ H_n(y) \end{bmatrix} e^{-y^2/2} \quad G(z,m) \quad \text{General, Hermite Polynomials} \\ \text{Modes alternate asymm./symmetric}$$

$$\frac{\omega^2}{c^2} - \frac{k}{\omega} - k^2 = \frac{(2n+1)}{c}, \quad c = \sqrt{gh}; \quad n = 0, 1, 2, \dots$$
 Dispersion relation

$$G(z,m) = e^{-z/(2H_s)} \operatorname{Re}(e^{-imz})$$

see T. Matsuno. Quasi-geostrophic motions in the equatorial area. Journal of the Meteorological Society of Japan, 44:25-42, 1966.

Wave number Frequency Spectra OLR

Time-series: Precipitation

Analysis increments SON 2011

Analysis increments SON 2011

Analysis difference ECMWF-UKMO for OND 2011

Day+5 Forecast errors: EPS ensemble mean vs. high-resolution

East Pacific: Mean wind & T in ON 2011

Analysis difference: control – GOES13 AMV denial

Zonal mean T and U erorrs in DJF uncoupled

JJA Precip and SWnet errors uncoupled

Diurnal cycle of Precipitation vs. TRMM

Covariance Nino3.4 STT & Prec. for DJF

(b) Cy38r1 Covariance Nino3.4SST-Precip DJF

Teleconn. U10hPa Tropics& 2T for DJF

The QBO

The MJO

24 November 2011: Meteosat 7 + IFS Analysis

Progress in MJO prediction

YOTC: OLR anomalies

(a) MJO Phase 2/3 36 h OLR anomaly

(b) MJO Phase 6/7-2/3 36 h OLR

YOTC: Difference in T-tendency: Phase 6/7-Phase 2/3

YOTC: Pdf of 24h Precipitation vs TRMM

Indian Ocean: Precip vs TCW & RH

YOTC: Hovmoeller of the OLR anomaly

YOTC: MJO event of Indian Ocean time series OLR and q-anomalies

YOTC: Evolution of Indian Ocean OLR anomaly & dq/dt physics

Towards high resolution of global convection: on the AQUA Planet

- prescribed SST distribution
- Perpetual: Sun fixed over the Equator
- prescribed trace gaz concentrations
- Run 4-member ensemble at T159 for 1-year
- start from a balanced state=6-month integration

see: "The Aqua-Planet Experiment (APE): Control SST simulation" and "Response to changed meridional SST profile", **Blackburn et al.** 2012, *J. Met. Soc. Japan*

Obs - real Earth - AQUA planet

Obs - real Earth - AQUA planet

AQUA planet: resolution +- conv

The small Planet: horizontal length-scale and time scale

$$R_a' = R_a / \gamma_r$$

 $f' = f \gamma_t \iff t' = t / \gamma_t$

$$Ro = \frac{U}{R_a f}$$

But

$$\frac{\partial u}{\partial x'} + \frac{\partial v}{\partial y'} = \gamma_r \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = -\frac{\partial w}{\partial z} = -\frac{\partial \omega}{\partial p}$$

also thanks to N. Wedi and S. Malardel for earlier versions of small planet

The small Planet: vertical scaling

$$g' = g \gamma_g; \quad H = \frac{RT}{g} \rightarrow H' = H / \gamma_g$$

$$\gamma_r = \gamma_t = \gamma_g$$

$$Ri = g \frac{\delta T}{\overline{T}} \frac{H}{U^2} = N^2 \frac{H^2}{U^2}; \quad c = \sqrt{g H}$$

or Lamb parameter

Physics scaling

AQUA planet: f=t & g scaling

Conclusions

- Most important area for energy generation and conversion is the upper-tropical troposphere
- Convective heating must occur in the right phase of the large-scale wave, and as T variations are small must show the right sensitivity to mid-tropospheric moisture
- Main forecast errors concern spindown of Hadley cell (why?), and a too strong SE Asian Monsoon moistening, easterly wind bias
- Largest low-level wind errors are in the East tropical Pacific where also analysis uncertainty is relatively large for 950-700 hPa winds
- with small Aqua planet nice forecast tool for global convection/waves=scalable Prototype for different planets

Any further

- Diurnal cycle will probably remain problem, address Monsoon heating, slightly overestimated shallow transport (trade Cu, dry PBL) though necessary for predictability, drizzle
- Major analysis impact expected from ADM-AEOLUS wind lidar

and ???

Uncertainty in SW flux diverg. due to Aerosols.

Nota: 10 W/m2~0.35 mm/day

Intraseasonal variability by events

courtesy J.Ph. Duvel see also their (Clim Dyn. 2012)

Correlations with T' at 250 hPa for

Phase 2/3 and forecast steps 12-36

Oper

Precip MJOcomp Phase 2/3 250 hPa Corr T-precip Nos:103 rms=0.206 ops 20 ° N 0° 20 ° S 60W 0 60E 120 180 120W 60

YOTC: Evolution of Indian Ocean OLR anomaly & dT/dt physics

YOTC: MJO forecasts April 2009: phase and amplitude as function of Fc lead time

