Initialization Techniques in Seasonal
Forecasting

Magdalena A. Balmaseda
Contributions from Linus Magnuson, Kristian Mogensen, Sarah Keeley
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Outline

The importance of the ocean initial conditions in SF

Ocean Model initialization

The value of observational information: fluxes, SST, ocean observations
The difficulties

The traditional Full Initialization approach: pros and cons.

Other approaches. Assessment

Full Initialization, Anomaly Initialization
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The basis for extended range forecasts

eForcing by boundary conditions changes the atmospheric circulation,
modifying the large scale patterns of temperature and rainfall, so that
the probability of occurrence of certain events deviates significantly
from climatology.

» Important to bear in mind the probabilistic nature of SF

eThe boundary conditions have longer memory, thus contributing to the
predictability. Important boundary forcing:

> Tropical SST: ENSO, Indian Ocean Dipole, Atlantic SST
» Land: snow depth, soil moisture

> Sea-Ice
> Mid-Latitude SST

» Atmospheric composition: green house gases, aerosols,...
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Impact of Sea Ice:
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Low over Western Europe and Greenland high: similar response in both years. Consistent with observations

The response was conditioned by the SST, in particular the North Atlantic (Gulf Stream region), pointing
towards the need of high resolution ocean models (or flux corrections).

The question of the predictability of the sea-ice anomaly remains.
From Balmaseda et al 2010
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Potential Energy for Tropical Cyclones
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End-To-End Seasonal forecasting System
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Initialization into Context

A decade of progress on ENSO

Relative Reduction in SST Forecast Error

p rediction ECMWF Seasonal Forecasting Systems
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*How much is due to the initialization, how much to _ o
model development? Half of the gain on forecast skill is

due to improved ocean initialization
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Importance of Initialization

eAtmospheric point of view: Boundary condition problem

» Forcing by lower boundary conditions changes the PDF of the
atmospheric attractor

"L oaded dice”

eOceanic point of view: Initial value problem

> Prediction of tropical SST: need to initialize the ocean subsurface.

o Emphasis on the thermal structure of the upper ocean
o0 Predictability is due to higher heat capacity and predictable dynamics
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Need to Initialize the subsurface of the ocean
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Initialization Problem: Production of Optimal I.C.

e Optimal Initial Conditions: those that produce the best forecast.

Need of a metric: lead time, variable, region (i.e. subjective choice)
Usually forecast of SST indices, lead time 1-6 months

e Theoretically, initial conditions should represent accurately the state of the
real world and project into the model attractor, so the model is able to

evolve them.

Difficult in the presence of model error

e Practical requirements: Consistency between re-forecasts and real time fc

Need for historical ocean reanalysis
e Current Priorities:

o Initialization of SST and ocean subsurface.
o Land/ice/snow
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Dealing with model error: Hindcasts

Ocean Real time Probabilistic
reanalysis Coupled Forecast
time ................. —
ooooooo > 0000000’ ooooooo> ooooooo’ """'»

Coupled Hindcasts, needed to estimate climatological PDF,
require a historical ocean reanalysis

Consistency between historical
and real-time initial conditions is
required.

Hindcasts are also needed for skill estimation
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Information to initialize the ocean

e Ocean model Plus:

SST
Atmospheric fluxes from atmospheric reanalysis
Subsurface ocean information

Time evolution of the Ocean Observing System

1982 1993 2001
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How do we initialize the ocean?

To a large extent, the large scale ocean variability is forced by the
atmospheric surface fluxes.

Different ocean models forced by the same surface fluxes will produce similar tropical variability.
Daily fluxes of heat (short and long wave, latent, sensible heat), momentum and fresh water fluxes. Wind

stress is essential for the interannual variability.

1. Constrained by SST: Fluxes from atmospheric models

have large systematic errors and a large unconstrained chaotic component

2. Constrained by SST+ Atmos Observations: Surface fluxes from

atmospheric reanalysis
Reduced chaotic component. But still large errors/uncertainty

3. Constrained by SST+Atmos Observations+0Ocean Observations: Ocean re-
analysis

Changing observing system and model error
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Uncertainty in Surface Fluxes: Equatorial Atlantic: Taux anomalies
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The Assimilation corrects the ocean mean state

Mean Assimation Temperature Increment
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Ocean Observing System

Data coverage for June 1982 Changing observing
‘ system is a challenge for
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Impact of data assimilation on the mean
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Large impact of data in the mean state leading to spurious variability

This is largely solved by the introduction of bias correction




Need to correct model  «_ .,/ ({p)ikyy-Hx
bias during assimilation
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during the forecast (for this the FG model and FC e e AT
model should be the same, e.i. coupled model)
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Ocean Initialization at the ECMWF

Ocean Reanalysis System 4 (ORAS4): 1958 to present. 5 ens
members

Main Objective: Initialization of seasonal forecasts

Operational ORA-S4 NEMO-NEMOVAR
*ERA-40 daily fluxes (1958-1989) and ERA-Interim thereafter

*Retrospective Ocean Reanalysis back to 1958, 5 ensemble members

*Multivariate offline+on-line Bias Correction (pressure gradient, Temp,Sal,
offline from recent period )

*Assimilation of SST, temperature and salinity profiles, altimeter sea level
anomalies an global sea level trends

*Balance constrains (T/S and geostrophy)

*Sequential, 10 days analysis cycle, 3D-Var FGAT. Incremental Analysis
Update

E ga : i; Mogensen et al 2012, Balmaseda et al 2012
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Anomaly correlation

Anomaly correlation

Impact on Seasonal Forecast Skill

Consistent Improvement everywhere. Even in the Atlantic, traditionally challenging area
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Quantifying the value of observational information

e The outcome may depend on the coupled system

e In a good system information may be redundant, but not detrimental.

If adding more information degrades the results, there is something wrong with the
methodology (coupled/assim system)

e Experiments conducted with the ECMWF S3

Balmaseda and Anderson 2009, GRL

SST (SYNTEX System Luo et al 2005, Decadal Forecasting Keenlyside et al, 2008)
SST+ Atmos observations (fluxes from atmos reanalysis)

SST+ Atmos observations+ Ocean Observations (ocean
reanalysis)
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Initialization and forecast drift

NINO3 mean SST drift

Drift (deg C)

ALL ATMOS+SST SST only
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Sign of non linearity:
The drift in the mean affects the variability

Different initializations produce different drift in
the same coupled model.

Warm drift in ALL caused by Kelvin Wave, triggered by the
slackening of coupled model equatorial winds

SST only has very little equatorial heat content, and the
SST cool s down very quickly.

SST+ATMOS seems balanced in this region. Not in others

NINO3 SST anomaly amplitude ratio
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Impact of “real world” information on skill:

Reduction in Error (MAE) in SST SF by
adding observational information

30 -
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15 1 @ OC DATA
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0_ I I I I I I I IL!:[
-5
-10
SO S | O O — - 1
O O O N0 E -
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The additional information about the real world improved the forecast skill,
except in the Equatorial Atlantic

Optimal use of the observations needs more sophisticated assimilation techniques and better
models, to reduced initialization shock
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Assessing the Ocean Observing System (S3)

Period 2001-2006 BARGO BALTI BMOCR _ _
1. No observation system is
151 = B ] redundant
10 Not even in the Pacific, where Argo, moorings and
altimeter still complement. Lessons for other
basins?

B .

£0d

SOMNIN
FPOMNIN
oOvdog
anNIoH

O | 1ARA
o113s

Tl HISN ‘y_l

2. There were obvious problems in
20 i the Eq Atlantic: model error,
assimilation, and possibly
insufficient observing system

Reduction {%) in forecast error
n

From Balmaseda and Anderson 2009
See also Fujii et al 2008

Important to bear in mind

1. The assessment depends on the quality of the coupled model

2. Need records long enough for results to be significant => any observing system needs to stay in
place for a long time before any assessment is possible.
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Seasonal Forecasts Approach
Some caveats 3333) %7?

31 — 1—-mon-lead
97{ —— B-mon-lead
— - ‘ |
'E' ; . .Hllqi f‘ 'l ‘_1"“ l| _;}.,f_lmkll ilT’!l. V) k'hl' "l"i". h
LA AR
-9 - ‘ ,I ' SST FC bias
_3- I Eul;sar‘gtzal 2011 MWR
1985 1990 1995 2000 2005 2010

* Non-stationary model error. It depends on starting date. For example, seasonal cycle
dependence, which is known. There are other unknown dependences

» Drift depends of lead time. A large number of hindcasts is needed. This is even more
costly in decadal forecasts.

« Initialization shock can be larger than model bias

Non-linearities and non-stationarity can sometimes render the
aposteriori calibration invalid
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Perceived Paradigm for initialization of coupled forecasts

Real world Model worid
Medium range , Decadal or longer
Being close to the real world is perceived SeaSOrlaI = Need to initialize the model attractor
as advantageous. Model retains on the relevant time and spatial scales.

information for these time scales. Model attractor different from real

Model attractor and real world are close? world.

At first sight, this paradigm would not allow a seamless prediction system.

eSeasonal traditional approach as in Medium range BUT (see next
slide)

eNot clear how to achieve initialization in model attractor

Anomaly Initialization (decadal forecasts, Smith et al 2007)
Full initialization with coupled models of the slow component only
Other more sophisticated (EnKF, coupled DA, weakly coupled DA)
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Seasonal Approach Anomaly Initialization

......... Model climatology
T +observed anomaly
- —y f—] —] Long
_»—} —}_» # q q coupled |‘
plecePp plecep :t integration —

As Medium range but: The model climatology does not depend of
Model bias taken into account during DA. forecast lead time. Cheaper in principle.

Hindcasts are still needed for skill
A posteriori calibration of forecast is estimation

needed. calibration depends on lead time.

_ _ Acknowledgment of existence of model
The model for first guess during the error during initialization.

initialization is different from the forecast

model. Bias correction estimated during
initializaiton can not be applied during the forecasts

x‘=x’ +b’ + K[y —H(x’ +b’)] x’ =x' +K[(y-y)-H(x’ —X)]
b =b’ + L[y —H(x” +b”)]

Model error is not corrected (“bias
blind algorithm”):
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Anomaly Initialization (Cont)

Two flavours

1. One-Tier anomaly initialization (Smith et al 2007). Ocean observations are assimilated
directly. Background error covariance formulation derived from coupled model (EOFs,

EnOI, EnKF). Emphasis on large spatial scales

2. Two-Tier anomaly initialization (Pohimann et al 2009). Nudging of anomalies from
existing ocean re-analysis. The spatial structures are those provided by the source re-

analysis.

Limitations

e It assumes quasi-linear regime.

e Sampling: how to obtain an observed climatology equivalent to the model climate?
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Initialization Shock and Skill

non-linear
interactions
important

,' i alization
Model Cli.l;,_

phase space

Real World

Forecast lead time




Initialization Shock and non linearities

non-linear
interactions
important

Model Cli.l;,_

Empirical Flux
Corrections

phase space

Real World

Forecast lead time




Comparison of Strategies for dealing with systematic errors
in @ coupled ocean-atmosphere forecasting system
as part of the EU FP7 COMBINE project

Flux correction

$— Normal initialisation
Anomaly initialisation

Magnusson et al. 2012, Clim Dyn Submitted. Also
ECMWF Techmemo 658

Magnusson et al. 2012, Clim Dyn Sumbitted. Also
ECMWF Techmemo 676
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Coupled model error

10m winds: model - analysis

SST bias: model - analysis

a) Coupled model

Part of the error comes from the
atmospheric component (too
strong easterlies at the equator)

The error amplifies in the couped
model (positive Bjerkness
feedback)

Possibility of flux correction

From Magnusson et al 2012 Clim Dyn.
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Different mean states

AnaIyS|s Coupled Free

a) 55T blas

Coupled Ucor Coupled UHcor
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Ucor: surface wind is
corrected when
passed to the ocean

UHCor: surface wind
and heat flux are
corrected when passed
to the ocean
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Comparison of Forecast Strategies: Drift

Nino 3 SST Drift 1-14 month forecast
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[ Laa
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Comparison of Forecast Strategies: Variability

FC sdv / AN sdv

e mnru A sar shility

Analysis Full Ini Anomaly Ini U Correction U+H correction
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Nino3.4 SST forecasts November 1995 — November 1998

Full Initialization Anomaly Initialisation
Nino3.4 SST Nino3.4 SST
4% *
U-flux correction U- and H-flux correction
Nino3.4 SST Nino3.4 SST

LU JULIUL uL
JANAN  JULUL JAMIAN JULIUL JANAN JIUL JANIAN
199896 19997 1998098 19999 % o ens fre+ 41y fraS

Linus Magnusson et al.
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Impact on Forecast Skill (SST and Precip)
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What about Coupled Initialization?

e Advantages:

> Hopefully more balanced ocean-atmosphere i.c and perturbations. Important for tropical
convection

» Framework to treat model error during initialization and fc

If the FG and FC models are the same, the (3D) bias correction estimated during the initialization can
(should) be applied during the forecast.

» Consistency across time scales (seamlessness):

currently, weather forecasts up to 10 days use “extreme flux correction”, since SST is prescribed. For longer
lead times a free coupled model is used. More gradual transition?

e Current Approaches

Weakly Coupled Data assimilation: FG with coupled model, separate DA of ocean and atmos.
Example is NCEP with CFSR: coupled reanalysis to initialized and calibrate seasonal forecasts

Strongly Coupled Data assimilation: Coupled FG, Coupled Covariances. Usually EnKF

e Challenges:

» Different time scales of ocean atmosphere . Long window weak constrain?
» Cross-covariances. Ensemble methodology more natural?
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Summary

e Seasonal Forecasting (SF) of SST is an initial condition problem

e Assimilation of ocean observations reduces the large uncertainty (error) due to the
forcing fluxes. Initialization of Seasonal Forecasts needs SST, subsurface temperature,

salinity and altimeter derived sea level anomalies.
e Data assimilation improves forecast skill.

e Data assimilation changes the ocean mean state. Therefore, consistent ocean

reanalysis requires an explicit treatment of the bias

e The separate initialization of the ocean and atmosphere systems can lead to
initialization shock during the forecasts. A more balance “coupled” initialization is

desirable, but it remains challenging.

e Initialization and forecast strategy go together. The best strategy may depend on the

model. The anomaly initialization used in decadal forecasts can have problems in

seasonal
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Latest Conditions

20C Isotherm Depth Tropics Sea Surface Temperature Tropics
Weekly anomaly (1951-2009 dimate). Week ending 20120828 Weekly anomaly (1981-2009 dlimate), Week ending 20120828
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