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Power Offer/Demand balance: a complex problem

Production units' program:
58 nuclear reactors
435 hydro power units
~50 thermal (coal, gas, fuel)
~900 Wind farms
~250,000 solar (including households)

Huge optimization problem: 1 000 000 variables & 10 000 000 constraints 
for day+2 30 minutes forecasts

Highly non convex and non linear, discrete and continuous variables

Highly demanding on optimality (1% differenceseveral millions euros/year) 
and feasibility (all technical constraints must be satisfied)

Problems:
Production=Demand at each time step
Many constraints
Financial optimization of production costs
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In France, power demand is highly dependent on temperature. 
 in winter : -1°C dT  +2 100 MW of extra production     ~ 20 M€ hedging
 in summer : +1°C dT  +400-500 MW of extra production

Demand depends on temperature
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Good winter ! Dry spring / 
early and quick 
melting

Drought & heat 
wave

Floods …

Daily variations of french hydro power production capacity in 2003

Effects of a warm year on the 
arrival of water in dams stocks 

Water resource: a strong interannual variability
& a forecasting challenge
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Weather & climate forecasts @ EDF … quite a long history

EDF has been using weather forecasts for more than 30 years

Main provider (operational contract) is Météo-France

Research with Météo-France, ECMWF, IPSL, Private companies …

European projects (SF / S2D):  PROVOST - (DEMETER) –
ENSEMBLES – EUPORIAS…

Applications: ANEMOS, SafeWind, COST Action WIRE …

Real-time forecasts / medium-term / monthly-seasonal-annual
forecasts / climate change projections
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A trivial (?) consideration

Increasing use of probabilistic temperature forecasts
(ECMWF VarEPS)

 Main difficulty : integration of probabilistic information into
(complex) existing operational processes

Ensemble mean
Observation

7.1°C difference  16,300 MW ! 
(16.5% of the total installed capacity) 
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What for ?

From D to D+14, temperature forecasts from the EPS are used to:

• forecast power demand & energy prices on the market

• compute financial risk indicators and determine hedging strategies

« 1% Risk »: what is the lowest 1% temperature likely to occur
during the period considered ?

Question: Can monthly forecasts bring useful information ?
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For 1 year optimization processes, historical time series are used



Skill in Europe
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Statistical Post-Processing by Météo-France

ECMWF Monthly forecasts + Météo-France statistical adaptation

ECMWF MF

ECMWF + Météo-France MOS

RMSE (average over 26 stations, june 2002-feb 2008)

Errors stabilize after 10-15 days
Post-processing improves the forecasts
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ECMWF Monthly Forecast
2010/02/04. T2m over France

Climatology
Monthly fcst
Observation

Week 1 Week 2

Week 3 Week 4

Feb 2010 cold spell
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Verification (10/2004 – 03/2012)
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- Deterministic & probabilistic scores (MAE, RMSE, ACC, BS, ROC)

- Comparison with 2 reference datasets



There is information up to week 3 (4), in particular in winter and/or when the 
observed anomaly is strong

 MoF are used routinely as support to decision making

Progress has been made in the use of probabilistic forecasts, but difficulties
remain:

end-users’ undestanding of probabilistic forecasts

how to introduce these forecasts in (complex) existing operational tools ?

how to compute extreme values (Q1% for instance) from 51 runs ?

how to mix 14 days/monthly and longer lead times approaches ?

 Need of provider/user collaboration & communication to develop the use of 
probabilistic forecasts

Key results
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Source : Eco2Mix          http://www.rte-france.com

Hydropower used to answer
peak demand  high value

 Need of accurate
precipitation forecasts from
d+1 to 1 year !

Water resource: a strong interannual variability
& a forecasting challenge
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Precip forecasts up to 
32 days …

… but skill is weak

Direct model outputs
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Corresponding 
analog dates 

ensemble

Conditionnal 
distributions 0

1
F

Precipitations

Analogs selection

Weather Forecasts  ECMWF Monthly Forecasts D+32
 Z700 & Z1000     
 Oct 2004 -> Oct 2010

 NCEP Reanalysis 
 Z700 & Z1000     
 1953 -> 2010

Weather Archive

 Gauge data      
 1953 -> 2010

Precipitation Archive

 Output for each prediction: 
50 selected analogs x 50 members -> 2500 monthly 
precipitation analogs forecasts (d+1  d+32)

 Oct 2004 -> Oct 2010

Analogy criterion based on 
Euclidian distance between 
geopotential fields anomaly

Probabilistic Forecasts

Analogs 
method

The analogs method
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PrecipitationAtmosphere

Surface

Ground

Evaporation

Evapotranspiration

Rain Snow

Z

N

L
U

Runoff

River streamflowInput data :
Daily precipitation
Mean daily air temperature

Routing

The MORDOR model

Domain and hydrological model

River
Streamflow

Precipitation,
Air Temperature

1 model for each watershed
43 watersheds
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Streamflow Climatology

Hydrological model forced with T&P historical time series

Hydrological model forced by analog T&P forecasts

Observations

CLIM

REF

ANA

OBS

3 different forecasting methods
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Improvement in precipitation forecasts

Precipitation: mean annual improvement (ROCSS analogue/raw forecasts) 
Relative improvement: always positive on average over the 43 basins

Week 1
+ Week 2
O Week 3
X Week 4

On average over 43 watersheds, annual
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ROCSS, Analogues/Reference, annual

 Monthly forecasts + analogues  improves results w.r.t. reference
method in almost all cases

 Differences exist according to individual basins / season

Week 1
+ Week 2
O Week 3
X Week 4

On average over 43 watersheds, annual

Improvement in river flow forecasts
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CLIM

OBS

Some examples

Target variable = monthly cumulated flow
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 ECMWF Geopotential monthly forecasts are skillful over 
North Atlantic/Europe

 The analogue method can add value to this basic skill and improve precipitation
(and temperature) forecasts

 The hydrological model is further improved with these dowscaled forecasts:
 Low flows are well represented
 Very high flows (floods) not well captured but better than reference

method in general

Work should go on to extend this to seasonal forecasts (3 to 6 months lead
time)

Conclusions / River flow MF 

ECMWF Monthly fcst 
(Z700 & Z1000)

Analogue 
Method

Hydrological 
Model

Local T2m & Precip over 
53 basins

Streamflow 
Prob fcsts
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Goal : evaluate SF models to 
forecast the rainy season’s
(date of begining and 
intensity ?)

Petit-Saut reservoir & dam:
•~70% of Guiana’s power production
•Volume : 3.5 billion m3

•Useful capacity 2.2 billion m3

Petit-Saut: provides 2/3 of French Guiana’s coastal area power
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ACC

Precipitation: some skill over the Tropics !

ROC
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30

J→F/M/A A→S/O/N

ACC 0,80 0,69

RMS SS 0,40 0,27

CRPSS 0,56 0,55

ROCA

Upper tercile 0,84 0,83
Middle 
tercile 0,64 0.57

Lower tercile 0,91 0.82

GPCP

Precipitation: some skill over the Tropics !

 ECMWF S3 hindcasts (1980-2005)

 Verification against GPCP monthly Precip

There is skill in precip / 
divergence@500hPa / Z500 / 
Humidity@500 …

Can this be used to forecast river flow 
upstream the reservoir to allow a better
management of the water stock ?

Precip scores (lead 2-4)
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Weather forecasts from
ECMWF

Statistical model

Inflow forecasts
from m to m+6

Historical data: inflows, SOI index, 
calendar data & GPCP precip

Forecasts: precip (+anomaly) & 
divergence@500(+anomaly)

Training period
Forecast period

Statistical model

Training
process

We use a commercial software / modelling suite to forecast inflows at Petit-Saut 
reservoir, from large scale forecasts

This model allows to use other predictors, like calendar data, dry/wet season index, 
SOI, climatology of target variable … and to pre-process the data (e.g. PCA …)

Streamflow forecasts ?
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Test period : 09/2006-08/2010Training period: 01/1981-05/2005

Input variables :

 SOI
 Historical flow (+anomaly) 
 Forecasts: 

 Precipitation (+anomaly)
Divergence @500 (+anomaly)
 Relative humidity @500
 Z500

Variables used and model training
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ECMWF SF/DECIDE REFERENCE: streamflow climatology
(41 years 1969-2009)

Lead 3

Correlation + 5.2%

RMS + 7.3%

ROCA + 5.4%

BS + 14.4%

CRPS + 6.7%

DECIDE vs REFERENCE

Some results

Decide vs. Ref method

Lead: 1 month

RMSSS ROCSS



Streamflow Climatology

 Forecasts are sometimes good, but sometimes the Reference
forecasts are better: how to arbitrate ?
End users want to get better or equal quality, but not worse !

Schematic view: not that easy to use in operations !
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2006/10 October (reference)

Regression parameters then applied to weekly flow values(ref) & forecasts
(monthly) to get forecast weekly values

Operations need (at least) weekly streamflow values !

Monthly flow forecasts on test period
09/2006-08/2010 Climatological monthly flow on the 

reference period 01/1969-12/2009
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Feb. 2008 (very rainy/climatology):

• Forecasts are much less dispersed than
reference climatology

• Closer to the observations
• Better probabilities ?

1 particular example … be optimistic !
Feb 2008, Weekly streamflow, 

lead=4 months

Conclusions:

 New forecasts better than ref method until leads 3-4 months, in particular in rainy seasons
 Simple Q/Q regression allows to provide weekly values, with good results in the case of feb. 

2008
 Re-entrain the model and compute scores with System 4 and extend to 2012: improvements ?
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 Power demand and hydro power production are probably the (current) 
most weather dependant fields

 State of the art NWP determinitic models are used routinely for short-
term forecasts

 Progress has been made in the use of probabilistic forecasts (incl. EPS)

 Monthly forecast now routinely used in decision making processes (but 
not included in tools/application models)

 Seasonal forecasts requested by end-users , but not really used 

 Some difficulties remain: 
 users’ understanding
 interface with existing tools …
 adequation to operational needs (distribution tails …)

Users’ training is essential

Need of upstream provider/user collaboration to develop products & the 
use of probabilistic forecasts

Summary
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Troccoli, A. et al.: Promoting New Links Between Energy and 
Meteorology. BAMS,  doi: 10.1175/BAMS-D-12-00061.1

http://www.icem2011.org
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25-28 June 2013, Météo-France International Conference Centre, Toulouse, France

http://www.icem2013.org



Thank you for your attention

Questions ?

Contact:

laurent.dubus@edf.fr

EDF R&D
Expert Researcher
Fluid Dynamics, Energies and Environment 
Department
Applied Meteorology and Atmospheric 
Environment Group
6 Quai Watier - BP 49
78401 CHATOU CEDEX
FRANCE
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