Applications of Seasonal Prediction in Australia

Oscar Alves and the POAMA Team

Centre for Australian Weather and Climate Research, Bureau of Meteorology

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Australian Government Bureau of Meteorology

Outline

Brief description of POAMA System

System Skill

-Seasonal

-Multi-week

-Modes and case studies (MJO, Modoki, SAM, etc)

Applications of Seasonal Forecast

-General

-Agriculture

-Marine (Reef bleaching, fisheries, etc)

A partnership between CSIRO and the Bureau of Meteorology

CSIRO

POAMA-1.5/POAMA-2 Differences

	POAMA-1.5	POAMA-2P	
Model	T47L17 Bureau Atmos + GFDL MOM2Same but 3 versions, one with bias correction		
Initialisation	OI (Univariate Smith Optimum Interpolation) Temperature Atmos: Nudging to NWP	PEODAS (Multivariate pseudo-Ensemble Kalman Filter) Temperature + Salinity Atmos: Nudging to NWP	
Ensemble generation	10 members Time-lagged atmos. ensemble No ocean perturbations	 30 members Multi-model (3 versions) No time-lagged ensemble Ocean perturbations from PEODAS No atmosphere perturbations in seasonal version 	

POAMA-2 Intraseasonal system

	POAMA-2P (Seasonal)	POAMA-2M (Monthly+Seasonal)
Ensemble generation	30 members Multi-model (3 versions) No lagged ensemble Ocean perturbations from PEODAS; No atmosphere perturbations	 33 members Multi-model (3 versions) No lagged ensemble Ocean and atmosphere perturbations from Coupled Breeding Scheme
Operational	30 member every 15 days out to 9 months	33 members every Thursday out to 4 months

PEODAS: POAMA Ensemble Ocean Data Assimilation System (Yin et al 2010)

Pseudo Ensemble Kalman Filter

3D Multivariate ocean assimilation

Temperature and Salinity profiles

Re-analysis from 1960-present

Produces an ensemble of 11 states (pseudo breeding like NCEP)

ch logy CSIRO

Australian Government Bureau of Meteorology

Correlation between re-analysis and UKMO EN3 dataset

Salt Content S300 ACC between EN3 and (d) PEODAS

150E

180

150W

120W

120E

90F

6ÔF

Produced by Maggie Zhao

(f) Control

Comparison with Other Centres

Correlation with "Observations"

Produced by Maggie Zhao

Australian Government **Bureau of Meteorology**

Initial Conditions for the Intraseasonal System 2M

(Yonghong Yin)

Towards Coupled Assimilation...

Based on the PEODAS infrastructure

Generates coupled bred perturbations of the atmosphere and ocean based on a breeding method

SST Skill El Nino and IOD (& Comparison with other models)

Mostly Based on hind-casts from ~1982-2006

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

POAMA Progress – SST Skill

Improvements due to

- Increased supercomputing
- •Improved forecast system (model, physics, initialisation strategy)
- •New observing Systems

Australian Government Bureau of Meteorology A partnership between CSIRO and the Bureau of Meteorology

Indian Ocean Dipole Skill

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Rainfall Skill

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Australian Government Bureau of Meteorology

Skill Intercomparison – Hit rate above median rainfall

Technical report – Langford et al

SON \$

Attributes diagram for above median rainfall

Brier Skill Score for SE – POAMA2P

EC teleconnections not so good

Australian Government

Bureau of Meteorology

Lead 4 month

CSIRO

Produced by Sally Langford

SON Skill lead 1 from 2P version

Produced by Eun-Pa Lim

POAMA-2M Seasonal Forecasts

POAMA-2 intraseasonal system has added benefits on the seasonal timescale...

Rainfall (above the upper tercile) Reliability: Skill of first season

POAMA Progress – Regional Skill

First Seasonal Rainfall/Max temperature – skill scores for upper tercile forecasts

Bureau of Meteorology

Multi-week Skill

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Australian RAINFALL above upper tercile: all forecast start months

POAMA has good skill in predicting rainfall and TMAX over eastern Australia in the second fortnight of the forecast, particularly during spring forecast months.

ROC area of the probability that rainfall (left) and TMAX (right) for the 2nd fortnight of the forecast is in the upper tercile for spring forecast months (SON, 1989-2006). ROC areas significantly more skilful than climatology are shaded (5% significance level).

Climate drivers operating on timescales longer than intraseasonal influence prediction skill

For rainfall forecast in the 2nd fortnight, there is higher skill when the IOD is strong and when ENSO is in an extreme (JJASON)

2010 La Nina

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

2010 September-October-November mean rainfall anomalies over Australia in the

TOP: observation

BOTTOM: POAMA2 ensemble mean forecast at LT0.

Forecast of different components

CSIRO

Bureau of Meteorology

Skill for other modes

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Predictions of Northern Australian Wet Season Onset Definition: Date of accumulation of 50 mm after 1st September

Percent Correct P24abc 1960-2009

SKILL in predicting the probability of an early onset (forecasts initialised 1 Sep)

MJO – Prediction of Index

Wheeler and Hendon (2004) RMM Index

RMSE & correlation between observed and POAMA RMM indices (over all start months)

COR

POAMA-2 skill exceeds POAMA-1.5

(Rashid et al 2010, Marshall et al 2011)

Australian Government Bureau of Meteorology

SAM – weekly prediction of index

Bureau of Meteorology

(Marshall et al²011)

BLOCKING – prediction of index

RMSE & correlation between observed and POAMA blocking indices at 140°E (all start months)

Hudson, Marshall, Alves 2011. Intraseasonal forecasting of the 2009 summer and winter Australian heat waves using POAMA. Weather and Forecasting. 26, 257-279.

General applications

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Australian Government Bureau of Meteorology

Products

SST: NINO, IOD, Modoki (Operational)

Reef Bleaching Risk (Operational)

Hydrological Stream Flow (Pre Operational)

Pacific Islands Temp/Rain (Pre Operational)

Regional Rainfall/Temperature e.g. Median/Tercile probs (Pre-Operational)

Wet season onset (Trial)

Multi-week rainfall/temperature (Trial)

MJO (Trial)

SAM (Trial)

Seamless products (e.g. Distributions of daily) (Trial)

Application specific Trial Products

Research into Applications

General (Temperature and Rainfall – e.g. for agriculture) Hydrological Streamflow prediction Reef Bleaching Risk Setting Tuna Quota regions in Tasman Sea Salmon farming in Tasmania Prawn farming in Queensland Pacific Islands (temperature, rainfall, sea level, bleaching risk, TCs) Prediction of heat extremes

Seamless Products http://poama.bom.gov.au/

Agriculture applications

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Value of a POAMA forecast for N management

(2500 ha wheat at Nyabing, WA)

	Climatology (history)	POAMA forecast (70% skill)	Correct forecast	POAMA % of best possible
Realistic risk averse (\$1 N for \$2 return)	\$235,000	\$402,500	\$490,000	66%
Maximise GM (risky!)	\$410,000	\$420,000	\$527,500	9%

The Lesson: A realistic risk-averse management strategy can benefit greatly from even a moderately skilful forecast.

Senthold Asseng and Peter McIntosh

Benefit of POAMA forecast year by year

Gross margins (A\$/ha)

How long for a forecast to pay off?

The Lesson: A farmer is 80% sure of making more money after just 3 years of using the POAMA forecast at Nyabing.

Australian Government Bureau of Meteorology

Marine

applications

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Tropics Reef SST Forecasts

- Real-time forecasts available in Google Earth
- SSTA, thermal stress & probability forecasts
- Extends across the tropical oceans 30S-30N

POAMA-3/ACCESS

Model Features

•Based on the New ACCESS coupled model (UKMO UM + MOM + CABLE)

•Resolution tbd between N96 and N216, L~38-80, depending on supercomputing

•Preliminary version in 2012 with limited hind-casts (N96L38, simple initialisation (SST nudging)

Initialisation Features

•Full coupled initialisation (coupled PEODAS) with cross-covariances and implicit breeding

Bureau of Meteorology

ACCESS Trial Multi-week Results

MJO Skill (index correlation)

Trial hind-casts with ACCESS Solid – ACCESS (atmosphere only) Dash – POAMA-2M

Once full POAMA initialisation system is implemented seasonal hind-casts will be evaluated

Significant increase in supercomputing resources on the NCI from 2013

Australian Government Bureau of Meteorology

Summary

•POAMA-2P Significant improvement due to Ocean Assimilation and Pseudo Multi-model

•POAMA-2M significant improvement due to ensemble generation, especially reliability

•Forecasts have been demonstrated to be useful for various applications

•Future: Seamless products, including extremes

•Future: Focus on new model and coupled assimilation/ensemble gen

