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Outline:

» Calibration and systematic model errors
» How we assess the skill of the seasonal forecast

» Important outstanding issues that affect the skill
assessment
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SST Biases
forecasts initiated in May (1981-2010)

JIA
2-4 months

SON
5-7 months
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SST Biases for DJF
Biases from 4 independent coupled systems
included in the EUROSIP muliti-model
(1996-2009)
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Nino 3.4 SST anomalies:
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Assessing spatial errors :

leading modes of rainfall variability
Observed  System 3 r=0.33 System 4 r=0.71
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Molteni et. al 2011

Figure 5.2.1 Left: Rainfall EOF-1 for West Africa from GPCP data. Centre: West Afiica EOF-1
(top) and EOF-2 (bottom) from S3. Right: EOF-1 (top) and EOF-2 (bottom) from S4. The EOF
domain is delimited by the grey box, shaded values are anomalies corresponding to 1 PC standard
deviation.Correlation with GPCP EOF-1 is listed above each model EOF.
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Calibration at ECMWF:

- Seasonal predictions for all the
parameters are issued in term of
anomalies.

- The amplitudes of the SST anomalies

over the tropical Pacific (NINO indices)
are re-scaled
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ECMWF Calibration

impact of variance correction:
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Figure3.2.2: NINO3 stafistics in S4 with (red) and without (blue) variance correction and S3
(green). Left: mean-square skill score; right: anomaly amplitude w.r.1. observations.

Molteni et. al 2011
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Calibration (Re-calibration):

» Calibration is a statistical adjustment of numerical
forecasts to produce probabilistic forecasts that are
more accurate (sharper and more reliable).

» Re-calibration adjusts the probability distribution
produced by the model using information about its past
performance.

» Thereis alarge variety of Calibration methods. The
choice of using a specific calibration procedure is
conditioned by the users needs.

» Recalibration require long sets of stationary training data
as well re-forecast data that covers along period

S ECMWF



Calibration :

» Multi-model approach by combining output from several
models, Is an effective alternative to create calibrated
probabilistic forecasts.

» The combination of several independent models widens
the ensemble spread by sampling model errors.

» The multi-model forecast can better represent the full
range of uncertainties. Its spread can represents better
the unpredictable noise so that the multi-model forecast
IS more reliable .
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Re-forecasts:

» It is an integral part of the seasonal forecast system

» It is used to assess the systematic errors and therefore
to calibrate the forecast

» It is used to assess the skill of the forecast

> It can be used to re-calibrate the forecast
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Seasonal forecast skill assessment:

> A set of verification scores for deterministic and
probabilistic forecast should be used.

» There is no single metric that can fully represent the
guality of the probabilistic forecasts.

» The robustness of verification statistics is always a
function of the sample size. WMO -SVSLRF suggests 20 years

» Typically verification is performed in cross-validation
mode.

» The skill depends strongly on the season, so forecast
evaluated separately for different starting months.



SST deterministic scores:
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Figure4.1.1. 54 (red) and 53 (blue) NINO3 and NINO3.4 SST scores for the 30 year re-forecast
period. 54 has decreased error (solid line) and increased ensemble spread (dashed line).



SST deterministic scores:
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Figure4.1.2. As above, but for NINO4 and Equatorial Atlantic S5T.
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2m temp grid-point anomaly correlation:

Sys 4

JJA month 2-4

Sys 3
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Roc skill score

RCC Shill Seore for OReanfEXsymdSY 00RI1 with 15 emmarmble members ad 18 bins
Mezr-mrface air termperature oomalies above the upper berdle
Hirdcast period 198 1-2010 with start i May ad averaging period 2o 4

Threshold compubed rarking the: sample
Black dotsfor values significntly dif erent from zero with 9 5 corfidence | 1000 samples)
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Reliability:

JJA 2m temp upper terc. Tropical band
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Reliability :

JJA 2m temp upper tercile
Tropical band Europe
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Seasonal forecast skill assessment:

» The verification of ensemble forecasts requires a
sufficient number of verification samples and involves the
application of probabilistic skill metrics.

» Seasonal forecasts show high prediction skill in the
tropics, particularly the ENSO region.

» Predictability is low in the extra-tropics.

» In central Europe, seasonal forecasts are at best only
slightly better than climatology.

SECMWF



Seasonal forecast skill assessment:

» The limitation associated with the sample size
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The limitation associated with of the

sample size: AC
0.35 —
.. . . 0.3
Variations in the spread of estimates 025
of AC (y-axis) with the expected n
values of AC(x axis). #
0.15- TN
The differences in skill the AC L R NN
estimates are due to the small 0057

verification time series. Spread is O T T 0T 0 0% 07 05 O's
shown for verification size 10-50.
Kumar 2009

For an “accurate” estimate of deterministic skill over the tropics
20 years sample might be sufficient while over mid-latitudes a
larger sample (>40 years) is needed.
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Sensitivity to the re-forecast period over
Europe:

JJA - Reliability for 2m temp anomaly in the upper Terc.
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The limitation associated with of the
sample size:

Nino=3.4 Index from DJF 1981 = FMA 2011 (3 month running mean)

Barnston et al. 2012 analyzed y
the real-time ENSO prediction
skills during the period 2002-
2011.

The study showed that during
the 9 years period (2001-
2011) the ENSO events:

- had emaller amnlifiides

Conclusions from Barnston : o T

E'Y with respect
gion for 1981-

maly {degC)
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Sea Surface Temperature Ano
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Enso prediction skill is slightly higher using
todays’s models.
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Decadal variability of ENSO predictability can hide
the skill improvements 1WF




The limitation associated with of the
sample size:

» The skill of the seasonal predictions is mainly associated
with the ability to predict ENSO and its influence over
remote regions (teleconnections)

» In the skill analysis we need to consider a sufficiently
long period that sample the ENSO variability.

» The skill assessment of the seasonal predictions is
based on the re-forecast performance.

» The size of the re-forecast (length and ensemble size)
affect the skill estimates.

» Re-forecasts data should cover a period of at least 20
years.

SECMWF



Seasonal forecast skill assessment:

» The effect of long term trend
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The effect of long term trend in the
sample

» The surface air temperature during the last 30 years
exhibits a warming trend.

» This global warmth in the last decades is a continuation
of the upward warming trend observed since the mid-20
century in response to the increase of GHGs (among
others Hegerl at al. 2007, Hoerling et al. 2007).

» Several studies discussed the importance of an
adequate representation of the GHGs in the coupled
climate models used for seasonal predictions (Doblas-
Reyes at al. 2006, Lininger et al. 2007, Cai et al. 2009)
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The effect of long term trend in the
verifying sample

» In the skill assessment how we can distinguish the
ability of reproducing the effect of climate change from
the ability of predicting the year-to-year variations of
anomalies?
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Verification with a moving climate to
filter out the effects of long term trends:

2m temp analysis averaged over SEUR (35N - 50N , 10W -40E)
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Anamaly Correlation Goefident for ECAMWFE with 11 ensemble members
Mear-suface temperature
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Seasonal forecast skill assessment:

» The effect of the ensemble size
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The relevance of the ensemble size:

Several authors have studied the dependence on ensemble size

of the probabilistic scores. (e.g. Richardson 2001; Kumar et al.
2001, Mason 2004, Miiller et al. 2005, Ferro 2007)

Kumar et al. 2001 showed that the ensemble size of 10-20
members is sufficient to estimate the skill only for moderate
ENSO cases.

Miiller et al. 2005 and Weigel et al. 2007 suggested the use
of a de-biased Brier and ranked probability skill score to
avoid the dependency on the ensemble size and to assess
forecast with small ensemble size.
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Sensitivity to ensemble size:

15 ensembles 31 ensembles
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The relevance of the ensemble size:

» Because of the atmospheric internal variability the
seasonal predictability is limited.

» |ldeally to estimate this upper limit in the average skill an
ensemble with an infinite size will be needed.

» In reality the seasonal predictions are done with a limited
ensemble size particularly for the re-forecast (typically 10-25
members)

SECMWF



Verification or Validation?

Validation is a more general term, less quantitative than
verification.

In the validation we can include any assessment of the model
the climate statistics (e.g. NAO frequency ...leading mode of
variability etc.)

Verification assess the accuracy of a time-series of forecasts
by comparing with a corresponding time-series of
observations.

From Laurie Wilson:

to validate is to check that one is doing the right things,
to verify is to check that one is doing things right




