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Purpose 

• Provide an overview of developments and requirements in 
the development of efficient algorithms for the computation 
of non-linear four-wave interactions (Snl4) in operational 
discrete spectral wave models 
 

• Discuss the concept ‘efficient algorithm’ in relation to 
computational costs and wave model performance and types 
of application 
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Contents 

• Importance of Snl4 in wave evolution 

• Analytical methods 

• Numerical methods 

• Discrete Interaction Approximations 

• Quasi-exact methods 

• Shallow water aspects 

• Conclusions 
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Importance of Snl4 
 

• Phillips (1960) showed basic principle of non-linear four-
wave interaction 
 

• Theory extended to random surface gravity waves by 
Hasselmann (1962) and Zakharov (1968) 
 

• JONSWAP experiment (1973) concluded that Snl4 is mainly 
responsible for forward shift of peak frequency 
 

• Shape stabilization and influence on spectral shape, both in 
frequency and direction space 
 

• Small and large time scale interactions 
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Basic equation of Snl4 
 

• Rate of change of action density in wavenumber k1 function of four 
wave numbers involved in a resonant interaction 
 
 
 
 
 

• Six-fold integral over the wave numbers k2, k3 and k4  

 

• Delta functions reflect resonance conditions and ensure 
conservation of wave energy, action and momentum 
 

• G complicated coupling coefficient, scales with k6 
 

• On a basic level triple products of action densities involved ni nj nk 

     

   

1
1 2 3 4 1 2 3 4 1 2 3 4

1 3 4 2 1 4 3 1 2 3 4

, , ,
n

G
t

n n n n n n n n d d d

     


        


     

 k k k k k k k k

k k k



6 Challenge the future 

Computational methods for Snl4 
 • Narrow peak approximations 

Longuet-Higgins (1975), Fox 
(1978) 
 

• Finite width approximation 
Dungey & Hui (1979) 
 

• Provided valuable insights into 
nature of Snl4 
 

• Narrow peak approximations 
suffer from insufficient degrees 
of freedom to be applicable in 
discrete spectral wave models 
(only broad scale) 
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Analytical methods 
 

• Rewrite transfer integral to eliminate delta-functions and to 
make transfer integral computationally feasible 
 

• At least three basic analytical transformations exist in 
literature 
 

• Webb (1978)  -  Masuda (1980) - Lavrenov (2001) 
 

• Methods differ in various ways: 
• choice of integration variables, i.e. Webb uses k1 and 
k3, Masuda uses k1 and k2 

• treatment of singularities 
• internal transformations and approximations 
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Numerical methods 
 • Sell and Hasselmann (1962) pioneers to  

evaluate transfer integral numerically 
 

• Symmetric method developed by  
Hasselmann and Hasselmann (1981)  
leading to EXACT-NL model 
 

• Ragged behaviour of EXACT-NL 
related to different spectral  
resolutions of input spectrum and  
computational grid  
 

• Webb      -> WRT method: Tracy, Resio, Perrie, Van Vledder  
Masuda   -> RIAM method: Komatsu, Hashimoto 
Lavrenov -> GQM method: Benoit, Gagnaire-Renou 
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Performance numerical methods 
 

• WRT – RIAM – GQM: Like their analytical masters these 
computational methods differ in various (hidden, unknown) ways, 
but do they provide the same answers? They are often used as 
reference in development of approximate methods. 
 

• Which of these computational methods is the most efficient? 
 

• Inter-comparison study for Snl4 is now being carried out (Van 
Vledder, Benoit, Hashimoto, Resio, Tolman, …) to asses methods 
 

• Comparison includes:  
• Individual spectra and aspects as spectral resolution, spectral 

shape, directional properties, symmetries, integration 
methods, depth effects, integration ranges, assumptions   

• Dynamic wave model performance in combination with other 
source terms 
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Hamburg developments at MPI 

• Exact-NL model first 3G discrete spectral 1d (time or fetch) wave 
model: N/  x or  N/  T = S = Xnl + Swind + Swcap  
 

• Exact-NL used for studies of source term balance, e.g.: 
• Komen, Hasselmann & Hasselmann (1984) searching for fully 

developed wave spectra 
• Finite depth gravity waves (Weber, 1988) 
• Directional response in turning wind fields (Van Vledder & 

Holthuijsen, 1993) 
 

• Computational methods too time consuming (not efficient) for 
application in operational discrete spectra 2D wave models 
 

• Development of efficient Discrete Interaction Approximation and 
leading to development of the WAM model (and Wavewatch, 
SWAN, CREST, WWM, …) 
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Discrete Interaction 

Approximation (DIA) 

• Discrete Interaction Approximation (DIA) evaluates one subset of all 
possible interaction configurations with =0.25 
 

•  
 
 
 
 
 

• DIA quite successful, but its deficiencies became gradually 
troublesome as they hamper development of other source terms, 
Van Vledder et al. (2000) 
 

• Errors in DIA are usually ‘corrected’ by tuning of other source terms 
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Original DIA 

• The original Discrete Interaction Approximation (DIA) of 
Hasselmann had two configurations: 1=0.25 and 1=0.15 with 
weights of 3000 and 375  
 

•  
 
 
 
 
 

• The second configuration was dropped because it’s added value 
in terms of wave model performance was insufficient with respect 
to model efficiency ! 
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Extension of the DIA  

• Adding additional -configurations 

• Van Vledder et al. (2000), 2 configurations 

• Hashimoto & Kawaguchi (2001), up to 5 configurations 

 

• Multiple -configurations have insufficient degrees of freedom to 

fully represent full nonlinear transfer.  

 

• When n=5, exhaustion is reached in the number of unique triplets 

(products of Ni Nj  Nk), Van Vledder (2005) 
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Generalized Multiple DIA  

• Generalized DIA with arbitrary configuration proposed by Van Vledder 

(2001); cast in symmetric form by  

Tolman (2003)  

• MDIA in principle able to represent  

full transfer using multiple configurations 

• Final GMD (Tolman, 2011): 
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Determining coefficients of MDIA 

• First attempts to determine coefficients of a multiple DIA were 

based on optimization against a limited set of (academic) test 

spectra using least-square analysis or error mapping, while using Xnl 

results as reference  

 

• Process is time consuming when number of configurations increases 

 

• What is a good set of test spectra? Is it representative? 

 

• What is next best set of configuration when extending the DIA? 

 

• No guarantee that MDIA provides good model performance 

 

• Verify efficient approximations in wide range of full model runs 

against range of parameters Hm0, Tp, Tm02, Tm01, Tm-1,0, , , , … 
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 Holistic optimization of a 

(Generalized Multiple) DIA 

• Hasselmann et al. (1985) chose only one configuration and =0.25 

in view of model efficiency and ability to reproduce growth curves 

 

• Tolman and co-workers (2003-2010) tried error mapping procedures 

with varying amounts of success 

 

• Tolman (2010) applies holistic optimization and a genetic algorithm  

to choose shapes and weights of individual configurations of GMD’s 

 

• Holistic in view of a large set of academic and fields cases 

representing many possible realistic cases 
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 Results of optimized GMD 

• Results obtained by Tolman (2010) very good. It is a major 

improvement over the classic DIA  

 

• Various GMD configurations are proposed with various degrees of  

complexity and related computational requirements 

 

• Error measure reduced by 60% for a GMD setting with 5 configurations 

 

• Tolman (2010) used Xnl based on WRT method as ground truth 

 

• Determination of optimal configurations time consuming, O(105) non-

stationary model runs  

 

• Optimal GMD configuration(s) depend on choice of other source terms, 

characteristics of host model, spectral resolution, spatial discretization 

and set of model runs 
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Accurate                                                 Incorrect 

Time  consuming                                          Fast 

Exact methods Discrete Interactions 

Full                 Reduced        Extended            Classic   

Xnl                                      GMDIA                     DIA 
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Bridging the gap between  

GMD and Xnl 

• GMD of Tolman (2012) shows good model performance against 

reasonable costs (subjective criterion) 

  

• Number of unique configurations still O(103) lower than Xnl based 

methods 

 

• This mismatch suggests that almost all quadruplets involved in the 

evaluation of Xnl do not significantly contribute to the transfer integral, 

but which ?  

 

• Reduced versions of Xnl being developed (quasi-exact approaches) by 

filtering, higher order integration techniques, smarter interpolation, 

smart assumptions, … 
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Quasi-exact methods 

• Two-scale approximation (TSA) of Resio and Perrie (2009, 2010) 

distinguishes broad scale and local scale.  

- Broad scale computed exactly with WRT for pre-selected spectra  

- Local correction of residues  

- Limited applicability for complex spectra 

  

• Advanced Dominant Interaction transfer approximation of Perrie, Susilo 

and Toulany (2010), by selecting part of transfer integral contributing 

most to total transfer rate. Poor performance in operational forecasts 

 

• SRIAM (Komatsu & Masuda); kind of MDIA with about 20 

configurations. Good performance in operational conditions. Still costly 

 

• Diffusion approximations (Zakharov, Pushkarev) 

 

• Neural Networks (Tolman & Krasnopolsky) 
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Reducing exact method to mimic a 

Discrete Interaction 

• Reducing WRT using mathematically consistent reduction of 

integration space. Can be considered as a top-down approach 

 

• Workhorse is the WRT method (but a similar methodology 

may apply to the RIAM and GQM methods) 
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The T-function in the WRT method 

k1 and k3 loop over  
all discrete wave numbers of a 
spectrum 
 
For each k1,k3 combination the 
resonant k2 and k4 wave numbers 
form closed path s (locus)  
 
T(k1,k3) integrates product of 
functions along locus; coupling 
coefficient G(s), Jacobian term 
J(s), wave number product Np(s) 
 
Bi-linear interpolation of nearest 
bin to evaluate locus function, 
option to save time 
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Integration along locus, LQA method 
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Piece wise integration along locus, 
lump contribution of coupling 
coefficient G and Jacobian J, 
which can be precomputed 

Pick a few points on locus, but 
keep all information of G and J  
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Incremental integration along locus 

Dual points on locus with k1 and k3 
form a quadruplet 
 
Identify individual wave number 
configurations on locus 
 
 
 
 
 
 
Determine shape factors 
, ,  for each quadruplet 
 
Generate set of discrete interactions 
with associated weights 



25 Challenge the future 

Equivalence of reduced WRT and 

Discrete Interaction 

• In WRT changes are made only to each pair of discrete n(k1) and 

n(k3), while using information from loci of k2 and k4. Action densities at 

the latter wave numbers are affected further on in the looping process. 

 

• In DIA changes are made simultaneously to all four wave numbers in a 

configuration of k1, k2, k3 and k4 

 

• Principle of detailed balance n1=n2=-n3=-n4 connects methods  

 

• Strength of individual T-contributions determine weights of 

quadruplets. Account for scaling with wave number 

 

• Good results obtained with reduced LQA versions. Mismatch still O(102) 
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Shallow water aspects 

 
• Basic principles of finding an efficient algorithm  

are equal for deep and shallow water 

• In shallow water shape of configuration  

depends on depth 

• Additional data storage and handling  

of pre-computed interaction coefficients, 

Jacobeans and interpolation weights  

• Theoretical developments in coupling  

coefficient in intermediate depths (Janssen  

and Onorato, 2007), where transfer rate  

goes to 0 for kh = 1.363, implications under investigation 

• Theoretical developments by Stiassnie & Gramstad (2012)  

about validity of Snl4 in non-homogenous situations  

• Not (yet) related to topic of efficiency 
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 Conclusions 

• The concept ‘efficient algorithm’ for Snl4 must be viewed in relation to 

model performance and computational requirements 

 

• … not only against its ability to efficiently approximate Xnl 

 

• Efficiency should also be considered in relation to types of model 

application  

 

• Model validation should include Hm0, T-measures, mean direction , 

directional spreading , spectral narrowness , ….  

 

• GMD is a (good) bottom-up approach but (maybe slightly) limited due 

to its dependence on choice of other source terms and model settings 

 

• Reduced Xnl top-down approach may provide efficient generic solution 
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 Questions ? 

Klaus Hasselmann                                             Vladimir Zakharov 


