
© 2012 IBM Corporation

Optimisation of weather applications on
Power and x86 architectures
with a focus on reproducibility

Francois Thomas – Optimisation of weather applications on Power and x86 architectures

Oct, 3rd 2012

© 2012 IBM Corporation

2

IBM Montpellier, France

© 2012 IBM Corporation

3

IBM Montpellier HPC team

L Enault
Engagement leader + Benchmarks

O Lagrasse
Benchmarks

N Rousseau
Benchmarks

François Gibello
Platform Computing

P Vezolle
BlueGene

N Tallet
BlueGene

E Michel
Benchmarks

F Thomas
Benchmarks

Benchmark

Advanced tuning

Client activities

Cloud

© 2009 IBM Corporation 4

Blue Gene / L
PPC 440 @700MHz
596+ TF

Blue Gene / P
PPC 450 @850MHz
1+ PF

2004 2020 2008 2012 2016

P
e

rfo
rm

a
n

c
e

Blue Gene / Q
In progress
20+ PF

 Blue Gene

Goals:
 Lay the ground work for ExaFlop

& usability
 Address many of the power

efficiency, reliability and
technology challenges

Goals:
Three orders of magnitude performance in 10 years
Push state of the art in Power efficiency, scalability, & reliability
Enable unprecedented application capability
Exploit new technologies: PCM, photonics, 3DP

© 2012 IBM Corporation

IBM Intelligent Cluster – it’s about faster time-to-solution

Building Blocks: Industry-leading IBM and 3rd Party components

OS

Management
Servers

Compute
Nodes

Networking

Storage

IBM Intelligent Cluster

Factory-integrated, interoperability-tested
system with compute, storage, networking
and cluster management tailored to your
requirements and supported as a solution!

Cluster
Management

Design

Build

Test

Install

Support

Take the time and risk out Technical Computing deployment

Allows clients to focus on their business
not their IT – that is backed by IBM

© 2012 IBM Corporation

© 2012 IBM Corporation

7

WW HPC Benchmark Centers

Poughkeepsie

Beijing

Montpellier

Bangalore

STG Briefing Center

Software Briefing Center

Design Center

Benchmark Center

Infrastructure Solutions

Linux Center

Grid Computing

High Availability (HACoC)

Dublin

Hursley

© 2012 IBM Corporation

8

Agenda

Live experiments

Reproducibility requirements

Why is that computation not reproducible ?

What can we do ?

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

9

Agenda

Live experiments

Reproducibility requirements

Why is that computation not reproducible ?

What can we do ?

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

0

Let's run the same code on a few systems...

$ for sys in power7 x86 sparc

do

 ssh $sys a.out

done

42.00000000

42.00000001

41.99999998

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

1

Oh well, let's stick to x86 only...

$ for sys in oldxeon wsm snb snb-mic0

do

 ssh $sys a.out

done

42.00000000

42.00000001

42.00000000

42.00000002

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

2

Sandy Bridge is what really matters today...

[snb]$ for mpi*omp in 48*8 96*4 192*2

do

 a.out

done

42.00000000

42.00000001

42.00000000

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

3

At least, “that” should work...

[snb]$ for repetitions in 1..10

do

 a.out

done

42.00000000

42.00000000

42.00000000

42.00000001

42.00000000

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

4

Agenda

Live experiments

Reproducibility requirements

Why is that computation not reproducible ?

What can we do ?

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

5

Maybe you can live without reproducibility ?

 All floating point computations are wrong anyway

 Initial conditions can be very uncertain too (ensemble)

 Numerical schemes should be made insensitive to tiny errors

 That's what Intel compilers think at least...

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

6

Or maybe you need reproducibility after all ?

 Regulatory requirement

– Nuclear reactors design

– Automotive crash simulation

– Aircraft engines

 Weather and climate studies

 Software QA

– Bit wise reproducibility is a great debugging aid !

 Can only be harder to achieve in the future :-(

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

7

Various flavours of non-reproducibility

 From run to run

– Nothing changed

– Fixed mpi*omp or even a sequential program

– On the same machine

 From mpi*omp to mpi'*omp'

 From one set of compiler options to another (Debug vs Release)

 From one architecture to another

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

8

Agenda

Live experiments

Reproducibility requirements

Why is that computation not reproducible ?

What can we do ?

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

1

9

How can we get non-reproducible results from run to run ?

 It takes a combination of

– Code sensitive to the order of computations

• « reduction » operations (DDOT, DGEMM)

– A SIMD instruction set (SSE, AVX, VSX)

– Non deterministic memory alignment

– In your code or in someone else's (MKL, ESSL)

 malloc()/allocate() do not always return 16 bytes (SSE/VSX) or 32 (AVX) aligned data

 Heap and stack alignment can vary due to

– varying run time conditions (date, directory, pid, ...)

– ASLR (Address Space Layout Randomization)

• check /proc/sys/kernel/randomize_va_space

 The compiler will process loops with a prologue (scalar) up to the first aligned index, the

loop body (SIMD) and an epilogue (scalar).

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

2

0

Why can we get non-reproducible results from run to run ?

double ddot(int n,

 double *a,double *b)

{

 double sum=0.0;

 int i;

 for(i=0;i<n;i++) {

 sum+=a[i]*b[i];

 }

 return sum;

}

$ icc -O2/-O3 -xAVX -S ddot.c

Optimisation of weather applications on Power and x86 architectures

… loop prologue

..B1.12:

 vmovupd (%rsi,%r8,8), %xmm2

 vmovupd 96(%rsi,%r8,8), %xmm10

 vmulpd (%rdx,%r8,8), %ymm3,

%ymm4

 vaddpd %ymm4, %ymm1, %ymm8

… unrolled by 4

 je ..B1.12

… loop epilogue

vmulpd packed double (AVX)

The result depends on alignment of a and b

© 2012 IBM Corporation

2

1

Why can we get non-reproducible results from run to run ?

double ddot(int n,

 double *a,double *b)

{

 double sum=0.0;

 int i;

 for(i=0;i<n;i++) {

 sum+=a[i]*b[i];

 }

 return sum;

}

$ gcc -O3 -mavx -ftree-vectorize -S ddot.c

Optimisation of weather applications on Power and x86 architectures

L4:

 vmovsd 8(%rsi,%r8,8),%xmm0

 vmulsd 8(%rdx,%r8,8),%xmm0,

%xmm4

 vaddsd %xmm4, %xmm3, %xmm0

 jb L4

vmulsd scalar double (scalar AVX)

© 2012 IBM Corporation

2

2

Why can we get non-reproducible results from run to run ?

double ddot(int n,

 double *a,double *b)

{

 double sum=0.0;

 int i;

 for(i=0;i<n;i++) {

 sum+=a[i]*b[i];

 }

 return sum;

}

$ icc -O2/-O3 -xAVX -fp-model precise

Optimisation of weather applications on Power and x86 architectures

..B1.4:

 vmovsd 8(%rsi,%r8,8),%xmm0

 vmulsd 8(%rdx,%r8,8),%xmm0,

%xmm4

 vaddsd %xmm4, %xmm3, %xmm0

 jb ..B1.4

vmulsd scalar double (scalar AVX)

© 2012 IBM Corporation

2

3

Agenda

Live experiments

Reproducibility requirements

Why is that computation not reproducible ?

What can we do ?

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

2

4

What can you do ?

 Don't use SIMD at all

 Don't use SIMD for reductions

 Don't use reductions

– Cast a DGEMM in terms of DAXPYs rather than DDOTs

 Use « safe » compiler options

 Don't use MKL, it might do bad things without warning you

– ESSL's DGEMM is reproducible and alignment safe

 Wrap your memory allocations so that they return consistently aligned addresses

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

2

5

A nice feature of the GNU linker : wrap

$ cat wrap_malloc.c

#include <stdlib.h>

void *__wrap_malloc(size_t bytes)

{

 void *p;

 if ((posix_memalign(&p,128,bytes) != 0)) { // 128=SIMD length

 p=(void *)0;

 }

 return p;

}

$ gcc -Wl,-wrap,malloc -o a.out main.o objects.o wrap_malloc.o

Optimisation of weather applications on Power and x86 architectures

All references to malloc() will be resolved in our __wrap_malloc() routine

© 2012 IBM Corporation

2

6

(Sort of) Safe Intel compiler options

 -O3 -xAVX -fp-model precise -assume protect_parens -prec-div -prec-sqrt -no-ftz -nolib-

inline

– -fp-model precise : Won't SIMDize reductions

– -assume protect_parens : Comply with parentheses

– -prec-div : no fancy divide

– -prec-sqrt : no fancy sqrt

– -no-ftz : do not flush denormals to zero

– -nolib-inline : do not use inline optimized math functions

 Performance hit : 10-15-20 % ?

 -no-vec will turn off SIMD code generation altogether

 Recover performance using the #pragma simd/!DIR$ SIMD directives around hot loops

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

2

7

Recent additions to Intel compilers and MKL to help reproducibility

 The very latest Intel Composer XE 2013 and MKL 11.0 bring features around « CBWR » :

Conditional Bit-Wise Reproducibility

 MKL contains multiple code paths for the same function (SSE2, SSE4.2, AVX). An

application can require that the same code path be followed on all platforms

(MKL_CBWR=COMPATIBLE, SSE4_2, AVX,...)

 For OpenMP reductions, use KMP_DETERMINISTIC_REDUCTION=yes

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

2

8

OpenMP and MPI have a lot to offer in the reproducibility violation
department

 !OMP$ PARALLEL FOR REDUCTION (+:SUM)

 OMP_SCHEDULE=dynamic or guided

– Calling for trouble if the order of computations within the loop does matter

 How reproducible is MPI_SUM in MPI_Allreduce ?

 Just like OMP_SCHEDULE :

DO I=1,NOBS

 CALL_MPI_RECV(A,1,MPI_REAL8,MPI_SOURCE_ANY, MPI_TAG_ANY,...)

 SUM=SUM+A

ENDDO

Optimisation of weather applications on Power and x86 architectures

© 2012 IBM Corporation

2

9

What's next ?

 Bit wise reproducibility across <runs,MPI,OpenMP,what not> is nice (brings trust)

 It may hurt performance, although compilers can help by selecting critical areas of code

 Involves components that may not be under your control (math libraries, parallel runtime)

 Will be harder to achieve in the future (NTV, higher levels of parallelism, more SIMD, hybrid

systems, accelerators, FPGA)

 Does not play nice with performance and power consumption

 Reproducibility is partially addressed by people studying the resilience of HPC

applications

 A lot to be done in little time (2018 is approaching fast)

 My post-Mayascale prediction : « The weather forecast for Dec, 21st, 2018 could be different

from the weather forecast for Dec, 21st, 2018, itself different from the weather forecast for

Dec, 21st, 2018. »

Optimisation of weather applications on Power and x86 architectures

