
Offloading I/O in AROME
(Sami.Saarinen@csc.fi)

Outline

Frequent field output destroys parallel scalability

Sub-space (SS) I/O for AROME

Preliminary results

Summary

Acknowledgements

This project was funded by PRACE under the title

“I/O-optimization to improve parallel scalability of

the meso-scale NWP-model HARMONIE”

Joint effort between the Finnish Meteorological Institute
(FMI) and the CSC – IT Center for Science Ltd.

– Sami Niemelä and Niko Sokka (FMI)

Special thanks to HLRS for providing Cray XE6 resources

Frequent field output destroys parallel scalability

The FMI requires relatively frequent field output from their
AROME model : output at every 15th step is a typical value

– Typically one minute time step is being used

– The volume of FA-output in this work is ca. 500MBytes

The actual FA-output itself is not a big problem – instead

gathering of the local fields (grid point & spectral) to the
master task for the actual output is a big problem

– Prevents smooth progress of the forecast integration

– Parallel scalability is therefore badly hit

Some of the grim facts

No field output

Output every
15th step with
compute tasks

Boundary fields
input at every

60th step

Boundary fields
input at every

60th step

Boundary fields
input at every

60th step

Output fields at
every 15th step

Improving scalability with sub-space (SS) I/O

Recall: the I/O itself is not a big problem – instead data
gathering to the master compute task is ... indeed

We found a scheme, where data gathering as well as field
output can be offloaded away from the compute PEs

In AROME this is possible by reorganizing calls to the
WRSPECA and WRGP2FA – i.e. the main spectral and grid
point field data gathering and output routines

Routines are “overloaded” by a sub-space of I/O PEs
letting computation to carry on – almost w/o disruption

The SS I/O scheme for AROME

 Busy SS I/O PE-set

 Free SS I/O PE-set

Compute PEs SS I/O PE-sets Disk

Grab & re-distribute
data from compute
PEs to the SS I/O PE-
set in duty by using
one-sided MPI_Get

ts # 30

ts # 15

Preliminary results

A test-suite with model size 512 x 600 x L60 was used

– Field output to FA-files every 15th time-step

– No SURFEX output, no radiation scheme on

On Cray XE6 at HLRS (Hermit), Germany

– AMD Interlagos 2.3GHz, 32 cores/node, 32GBytes/node

Using SS I/O with 1, 2, 4 and 8 PE-sets each having just
one MPI-task, but occupying up to 2 extra full XE6-nodes
– sacrificed up to 64 cores extra (<< compute cores)

Compute

MPI-tasks

Without

fld output

Std Run,

no SS I/O

Number of SS I/O sets, 1 MPI-task / set

1 2 4 8

288 3055 3951 3638 3232 3171 3355

576 1674 2510 2235 2077 1856 1871

1152 960 1948 1656 1528 1356 1236

1440 884 1849 1563 1450 1235 1218

1728 789 1745 1562 1391 1198 1155

Estimated 24h FC timings (est. from 6h FC)

Forecast days per day

No field output

Output every
15th step with
compute tasks

Output with 1
SS I/O PE-set

Output with 2
SS I/O PE-sets

Output with 4
SS I/O PE-sets

Output with 8
SS I/O PE-sets

Elapsed time per time-step

Boundary fields
input at every

60th step

Output fields at
every 15th step

SS I/O

Ran out of free SS I/O
PE-sets : compute PEs
perform field output

SS I/O

Boundary input step

SS I/O SS I/O

SS I/O SS I/O

Ran out of free SS I/O
PE-sets : compute PEs
perform field output

Ran out of free SS I/O
PE-sets : compute PEs
perform field output

Boundary input step

Boundary input step

SS I/O SS I/O

SS I/O

SS I/O

Boundary input step Enough SS I/O PE-sets :
compute PEs not

involved in field output

Boundary input step

Summary

Frequent field output destroys parallel scalability – and
yet it has to be provided for smooth forecast animations

Offloading output to a sub-space of I/O-tasks using
passive one-sided MPI-communication releases compute
tasks from I/O-burden and greatly improves scalability

The SS I/O is especially suitable for limited area models

Supplementary slides

Implementation details

Compute PEs and SS I/O-tasks initialize MPI-processing
together and afterwards I/O-tasks are put in a wait loop

SS I/O-tasks are divided into so PE-sets (or I/O-clusters),
each of them containing one or more MPI-tasks

The master task of the compute PEs have a common
communicator with each task in a PE-set

The default communicator within compute PEs operates
with compute task only  no code modifications

Each PE-set also uses default comm. within its I/O-cluster

Implementation details (cont’d)

Upon opening field output file, the master compute task
checks whether next I/O-cluster is available – or too busy

– If available, then each compute task places copy of its local
contribution to GP and SP-fields into its one-sided
communication buffer (a local memory copy) and notifies
the master task of the I/O-cluster in duty

– If the I/O-cluster is busy, then I/O gets processed in
traditional synchronized way : using compute tasks only

Implemented routines : WRSPECA and WRGP2FA

Implementation details (cont’d)

A typical configuration has perhaps 2 .. 8 SS I/O-sets and
each set (i.e. cluster) usually has only one MPI-task (so
called master I/O PE – per cluster)

We can allocate the whole SMP-node (or parts of it) for
SS I/O’s disposal – e.g. 32 cores on Cray XE6 at HLRS

– Such MPI-task is also available for OpenMP, e.g. 32-way 

This allocation strategy guarantees a plenty of memory
for the current limited area model resolutions

– We have run successfully up to 1600 x 1600 x L65

