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What is CRESTA - see http://cresta-project.eu/

- Collaborative Research into Exascale Systemware, Tools and Applications
- EU funded project, 3 years (year 1 just completed), ~ 50 scientists

- Six co-design vehicles (aka applications)
- ELMFIRE (CSC, ABO,UEDIN) - fusion plasma
- GROMACS (KTH) - molecular dynamics
- HEMELB (UCL) - biomedical
- IFS (ECMWEF) - weather
- NEK5000 (KTH) & OPENFOAM (USTUTT, UEDIN) - comp. fluid dynamics

- Two tool suppliers
- ALLINEA (ddt : debugger ) & TUD (vampir : performance analysis )

- Technology and system supplier - CRAY UK

- Many Others (mostly universities)
- ABO, CRSA, CSC, DLR, JYU, KTH, UCL, UEDIN-EPCC, USTUTT-HRLS
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IFS model: current and planned model resolutions

IFS model Envisaged Grid point Time-step  Estimated
resolution Operational spacing (km)  (seconds) number of
Implementation corest
T1279 H? 2010 (L91) 16 600 1100
2012 (L137) 1600
T2047 H 2014-2015 10 450 6K
T3999 NH3 2020-2021 5 240 80K
T7999 NH 2025-2026 2.5 30-120 1-4M

1 - agross estimate for the number of ‘Power7’ equivalent cores needed to achieve a 10 day
model forecast in under 1 hour (~240 FD/D), system size would normally be 10 times this number.

2 — Hydrostatic Dynamics

3 — Non-Hydrostatic Dynamics C R EST é
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Thank you to Nils Wedi for providing this figure
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Planned IFS optimisations for [Tera,Peta,Exa]scale

-radiation :
FIDIR| | -GP dynamics S FTINV |

Fourier space
trlitom 1 T trmtol
LTDIR : | LTINV ;
................................... Spectral space

-horizontal gradients
-semi-implicit calculations

-horizontal diffusion




Semi-Lagrangian Transport

® Computation of a trajectory from each grid-point
backwards in time, and

® Interpolation of various quantities at the departure
and at the mid-point of the trajectory

arrival
\ Y Y Y Y departure
\Y//Vi( Yy
mid-point

\ MPI task partition

> ECMWF




Semi-Lagrangian Transport:
T799 model, 256 tasks

Task 11 encountered the highest

wind speed of 120 m/s (268

mph) during a 10 day forecast
_starting 15 Oct 2004

> ECMWF




blue: halo area

Halo width assumes a maximum
wind speed of 400 m/s x 720 s
T799 time-step (288 km)

Get u,v,w wind vector variables (3)
from “neighbour’ tasks to determine
departure and mid-point of trajectory

> ECMWF



red: halo points actually used

Get rest of the variables
(26) from the red halo area
and perform interpolations

Note that volume of halo data
communicated Is dependent
on wind speed and direction
In locality of each task

A OECMWFF
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IFS Optimisations for ExaScale & Co-design

All currently planned IFS optimisations in the CRESTA project
- Involve use of Fortran2008 coarrays (CAF)
- Used within context of OpenMP parallel regions

Overlap Legendre transforms with associated transpositions

Overlap Fourier transforms with associated transpositions

Rework semi-Lagrangian communications
- To substantially reduce communicated halo data george.mozdzynski@ecmwf.int
- To overlap halo communications with SL interpolations A (60 6]

harveyr@cray.com
. _ : michs@kth.se
CAF co deslgn team _ / tobias.hilbrich@tu-dresden.de
- caf-co-design@cresta-project.eu kostas@ihs.uni-stuttgart.de
- ECMWF - optimise IFS as described above _m-bug@lepilc-fg)-tacalik e
.. jens.aolescna u-daresaen.dae
- CRAY - optimize DMAPP to be thread safe xaguilar@pdc.kth.se
- TUD - visualize CAF operations in IFS with vampir david@allinea.com
- ALLINEA — debug IFS at scale with ddt (MPI/OMP/CAF) JETENTE)EEEE 15U

CREST



mailto:caf-co-design@cresta-project.eu

HPC in Meteorology workshop, 1-5 October 2012

Overlap Legendre transforms with associated transpositions
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Overlap Legendre transforms with associated transpositions/3
(LTINV + coarray puts)

Expectation is that compute (LTINV-blue) and communication (coarray
puts-yellow) overlap in time. We should be able to see this in the future

with an extension to vampir being developed in CRESTA
CRESTQ




Semi-Lagrangian — coarray implementation

red: only the halo points that are used are communicated

Note no more blue area
(max wind halo) and
associated overhead.

Also, halo coarray
transfers take place in
same OpenMP loop as
the interpolations.

CREST
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T2047L137 model performance on HECToR (CRAY XE6)
RAPS12 IFS (CY37R3), cce=7.4.4
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T2047L137 model performance on HECToR (CRAY XE6)
RAPS12 IFS (CY37R3), cce=8.0.6 -hflex_mp=intolerant

SEPT 2012
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T2047L137 IFS model performance improvment
by using Fortran2008 coarrays on HECToR (CRAY XE6)
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Efficiency
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Schedule for IFS optimisations in CRESTA

40Q2011-1Q2012 Coarray Kernel ¢

1Q2012 IFS CY37R3 portto HECToR ¢
Run T2047 model at scale and analyze performance ¢/

2Q2012 Scalability improvements arising from T2047 analyses (“low hanging fruit”) ¢
Overlap Legendre transform computations with associated TRMTOL & TRLTOM
transpositions ¢/

3Q2012 Semi-Lagrangian optimisation ¢/
Overlap TRGTOL & TRLTOG transpositions with associated Fourier transforms ¢

4Q2012 RAPS13 IFS CY38R2 port to HECTOR (contains Fast Legendre Transform)
T3999 model runs on HECToR
Test with IBM F2008 ‘coarray technology preview’ compiler on Power7 at ECMWF

1Q2013 Use coarrays to optimise TRMTOS/TRSTOM transpositions
Initial use of GPUs for IFS (targeting LTDIR/LTDIR dgemm’s)

2013-2014 Other IFS scalability optimisations (transpose SL data, physics load balancing, +++)
Development & testing of a future solver for IFS (Plan B)
Following closely developments in GungHO! project (MetOffice, NERC, STFC)
GungHO=Globally Uniform Next Generation Highly Optimised



11. 05,2006 — 11:28
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IFS model coarray developments

Compile with —-DCOARRAYS

for compilers that support Fortran2008 coarray syntax

Run with,

&NAMPAR1
LCOARRAY S=true, to use coarray optimizations

&NAMPAR1
LCOARRAY S=false, to use original MPI implementation

CREST
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Motivation — T2047 and T3999 costs on IBM Power7

(percentage of wall clock time)

T2047(%)  T3999(%)
2014-15  2020-21

LTINV._CTL - INVERSE LEGENDRE TRANSFORM 3.30 8.40
LTINV. CTL - M TO L TRANSPOSITION 5.37 5.24
LTDIR_CTL - DIRECT LEGENDRE TRANSFORM 3.56 5.30
LTDIR_ CTL - L TO M TRANSPOSITION 2.84 3.14
FTDIR_CTL - DIRECT FOURIER TRANSFORM 0.20 1.07
FTDIR_ CTL - G TO L TRANSPOSITION 2.85 2.21
FTINV. CTL - INVERSE FOURIER TRANSFORM 0.72 3.76
FTINV. CTL - L TO G TRANSPOSITION 4.47 7.36

SUM(%)  23.4 36.5

L137/LT L91/FLT
4224Tx8t 1024Tx16t
528 Nodes 256 Nodes
470 FD/D 28 FD/D

CREST
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® Compute = Total

1279191 (H) 2047191 (H) 20471137 3999191 39991137 7999 L40

Relative computational cost of the spherical harmonics transforms plus the spectral
computations (solving the Helmholtz equation) as a percentage of the overall model cost for
various configurations. Red bars indicate the total cost including the global communications
involved. Percentages have been derived considering all gridpoint dynamics and physics
computations but without considering 10, synchronization costs (barriers), and any other
ancillary costs. All runs are non-hydrostatic unless indicated with (H). All runs further show that
the communications cost is less than or equal to the compute cost on the IBM Power7 and
have good potential for “hiding” this overhead. However, communication cost is likely to

increase with the number of cores. C R EST@
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Planned IFS optimisations for [Tera,Peta,Exa]scale

-radiation :
FIDIR| | -GP dynamics S FTINV |

Fourier space
trlitom 1 T trmtol
LTDIR : | LTINV ;
................................... Spectral space

-horizontal gradients
-semi-implicit calculations

-horizontal diffusion
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Other Fortran 2008 compilers

License finally agreed with IBM

- ECMWEF will install xIf v14 compiler on Power7
Only took 1 year from first inquiry (pre-CRESTA)
Subject to non-disclosure

Am sure we will be granted permission to present and publish results if
they are good

Plan is first to test IFS RAPS12 with this compiler

Promoting need for Fortran 2008 to vendors is important

Intel ?

Fujitsu ?

gfortran ?
PGI ?

CREST




Using HECToR

- Moved IFS from cce=8.0.3 to cce=8.0.6

- To pick up fix to random hangs at start of job

- Job would run to cp time limit without executing a single application statement
- Refunded lost KAuU's

- 8.0.6 also fixed a couple of random coarray runtime failures
- Thanks to CRAY for providing a good compiler release

- Multiple aprun’s in high core count jobs (10K to 64K cores)
- To improve overall system resource utilization
- Small, medium and large batched jobs
- Some waste due to unused cores in each job
- Promise of refund (more KAus) at some time in future

CREST
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Hybrid runtime support - IFS

Initial IFS MPI implementation 1994-1996

Hybrid MPI/OpenMP implementation ~1999 OpenMP for IFS T1279L91 model

OpenMP implementation at highest level
P pleme! gnestieve - on IBM Power6 (~2009)
Single parallel regions for each of physics, radiation scheme,

dynamics, Legendre transforms, Fourier transforms and Fourier

space computations /
Schedule dynamic used in most parallel regions 4 =
/
. . . . 35
Hybrid implementation benefits = —
About 20 percent performance improvement at scale ks 54 threads
Huge memory savings , memory use reduces linearly with number g 25 B e
of OpenMP threads @a- pd ~o 16 threads
Next evolutionary step: use of Fortran 2008 coarrays :s /
to 1
. . . . . . 0 32 64 96 128 160 192 224 256
Overlap computation with communication in transpositions Nodes

- Fourier space <-> Spectral space comms, overlapped with
Legendre transforms

- grid point space <-> Fourier space comms, overlapped with
FFTs and Fourier space computations

Reduce total halo communication in semi-Lagrangian scheme
Dominant coarray communications in OpenMP parallel regions

CREST




OpenMP for IFS T1279L91 model on IBM Power6

(~2009)
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B Member States B Co-operating States Under negotiation

ECMWF

An independent
intergovernmental
organisation

established in 1975
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IFS model speedup on IBM Power6 (~2010)

Speedup
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Medium-range forecasts to 15 days ahead,
including early warnings of severe weather.

National Meteorological Services

Early warnings interpreted and tailored to specific user needs
(including impacts); more detailed short-range (1-2 day) warnings.
r
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Overlap Legendre transforms with associated transpositions/2
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IFS grid point space:

“EQ_REGIONS” partitioning for 1024 MPI tasks
Each MPI task has an equal

number of grid points

| JiEs

Y
|
|

|

|4 ——
A
[———




HPC in Meteorology workshop, 1-5 October 2012

1$OMP PARALLEL DO SCHEDULE(DYNAMIC,1) PRIVATE(JM, IM)
DO JM=1,D%NUMP
. IM = D%MYMS(JIM)
LTI NV reCOd|ng CALL LTINV(IM,JM,KF_OUT LT,KF_UV,KF_SCALARS,KF_SCDERS, ILEI2,IDIM1,&
& PSPVOR,PSPDIV,PSPSCALAR ,&
& PSPSC3A,PSPSC3B,PSPSC2 , &

& KELDPTRUV,KFLDPTRSC,ESPGL_PROC
RN PROO ORIGINAL
COMPUTE 1SOMP END PARALLEL DO code
DO J=1,NPRTRW
COMMUNICATION ILENS(J) = D%NLTSFTB(J)*IFIELD
IOFFS(J) = D%NSTAGTOB(J)*IFIELD
ILENR(J) = D%NLTSGTB(J)*IFIELD
IOFFR(J) = D%NSTAGTOB(D%MSTABF(J))*IFIELD
ENDDO

CALL MPL_ALLTOALLV(PSENDBUF=FOUBUF_IN,KSENDCOUNTS=ILENS, &
& PRECVBUF=FOUBUF ,KRECVCOUNTS=ILENR, &
& KSENDDISPL=10FFS,KRECVDISPL=I0FFR, &
& KCOMM=MPL_ALL_MS_COMM,CDSTRING="TRMTOL: ")

1$OMP PARALLEL DO SCHEDULE(DYNAMIC,1) PRIVATE(JIM, IM,JW, IPE, ILEN, ILENS, I0FFS, 10FFR)
DO JM=1,D%NUMP
IM = D%MYMS(IM)
CALL LTINV(IM,JIM,KF_OUT LT,KF UV,KF_SCALARS,KF_SCDERS, ILEI2, IDIM1,&
& PSPVOR,PSPDIV,PSPSCALAR ,&
& PSPSC3A,PSPSC3B,PSPSC2 , &
& KFLDPTRUV ,KFLDPTRSC, FSPGL_PROC)
DO JW=1,NPRTRW
CALL SET2PE(IPE,0,0,JW,MYSETV)
ILEN = D%NLEN _M(JW,1,IM)*IFIELD
IFC ILEN > O )THEN

TOFFS = (D%NSTAGTOB(JW)+D%NOFF _M(JIW,1,IM))*IFIELD
I0FFR = (D%NSTAGTOBW(JW,MYSETW)+D%NOFF_M(3W,1,IM))*IFIELD NEW
FOUBUF_C(I0FFR+1: 10FFR+1LEN) [ 1PE]=FOUBUF _IN(I10FFS+1: I0FFS+ILEN)
ENDIF d
ILENS = D%NLEN_M(JW,2,IM)*IFIELD coae

IFC ILENS > O )THEN
TOFFS = (D%NSTAGTOB(JIW)+D%NOFF_M(JIW,2,IM))*IFIELD
I0FFR = (D%NSTAGTOBW(JW,MYSETWY+D%NOFF_M(3IW,2,IM))*IFIELD
FOUBUF_C(I0FFR+1: I0FFR+1LENS) [1PE]=FOUBUF_IN(i0FFS+1: I0FFS+ILENS)
ENDIF
ENDDO
ENDDO
1$OMP END PARALLEL DO
SYNC IMAGES(D%NMYSETW)
FOUBUF(1: IBLEN)=FOUBUF_C(1: IBLEN) [MYPROC]




T159 model scaling: small model with ‘large’
number of user threads (4 threads per task)

3584
3072 l///////'
2560 l/////,/
2048

/ —ideal
1536

/ —~T159
1024

Speedup

0 512 1024 1536 2048 2560 3072 3584
User Threads

> ECMWF



IFS Semi-Lagrangian Comms

® SL. comms scaling limited by
- constant width halo for u,v,w (400 m/s x time step)

- Halo volume communicated, which is a function of wind speed and direction
in locality of each task

® ‘Halo-lite’ approach tested (2010)

- Only get (using MPI) grid columns from neighbouring tasks that your task
needs, i.e. only the red points

- Requires more MPI communication steps (e.g. mid-point, departure point)

- No faster than original approach due to overheads of above

® CRESTA optimisation using F2008 coarrays (2012)

- Only get grid columns from neighbouring tasks that your task needs, i.e.
only the red points

- Do the above in the context of an OpenMP parallel region; overlapping
interpolations for determining the departure point & mid-point and
interpolations at these points

> ECMWF



wind plot

250mis |

Friday 15 October 2004 12UTC ECMWF Forecast t+0 VT: Friday 15 October 2004 12UTC Model Level 1 U velocity/V velocity




T159 deeI task 37 ,of _256 tasks

* Task encountering the highest wind
..~ speed of 138 m/s (309 mph) during a
= 10 day forecast starting 17 Oct 2010
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T159 model task 128 of 1024 tasks
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T159 model task 462 Qf 4096 tasks
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Computational Cost at T2047 and T3999

EGP_DYN
EBSP_DYN
B TRANS
B Physics
OWAM
Eother

Hydrostatic T, 2047 Non-Hydrostatic T, 3999

Tstep=240s, 13.6s/Tstep

Tstep=450s, 5.8s/Tstep With 512x16 ibm_power6

With 256x16 ibm_power6

CREST
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Breakdown of TRANS cost: Computations vs. Communications

mEComms

m Comps

HT 2047 ~2015 NH T, 3999 ~2020

Data sent/received: 289.6GB/s

CREST

Data sent/received: 117.8GB/s




IFS Introduction - A history

® Resolution increases of the deterministic 10-day
medium-range Integrated Forecast System (IFS)

over ~25 years at ECMWEF:

1987
1991
1998
2000
2006
2010

: T 106 (~125km)

: T 213 (~63km)
: T, 319 (-63km)
: T.511 (~39km)
: T, 799 (~25km)
: T,1279 (~16km)

> ECMWF



Introduction — A history

® Resolution increases of the deterministic 10-day medium-range
Integrated Forecast System (IFS) over ~25 years at ECMWF:

1987: T 106 (~125km)
1991: T 213 (~63km)
1998: T, 319 (~63km)
2000: T, 511 (=39km)
2006: T, 799 (~25km)
2010: T, 1279 (~16km)
20157: T,2047 (~10km)

2020-?7?7?: (~1-10km) Non-hydrostatic, cloud-permitting, substan-
tially different cloud-microphysics and turbulence parametrization,
substantially different dynamics-physics interaction ?

> ECMWF



The Gaussian grid About 30% reduction in number of point:

Reduced grid

Reduction in the number of Fourier points at high latitudes is possible because
associated Legendre functions are very small near the poles for large m.

> ECMWF




(Adaptive) Mesh Refinement

® The IFS model is inherently based on a fixed structured
mesh due to the link between the spectral representation
and the position of the grid-points (zero’s of the ordinary
Legendre polynomials), which makes selective mesh
refinement (adaptive or not) difficult to achieve.

® “AMR” possibilities: coexisting global multigrids,
physics/ dynamics on different grids, wavelet-collocation
methods, ...: Costly investment both in RD and
computational cost

® Hence it is of strategic importance to understand the
added-value of adaptive or static mesh refinement for
multiscale global NWP and climate prediction !

> ECMWF




Nonhydrostatic IFS (NH-IFS)

Bubnova et al. (1995); Bénard et al. (2004), Béenard et al.
(2005), Béenard et al. (2010), Wedi et al. (2009), Yessad and
Wedi (2011)

® Arpége/ALADIN/Arome/HIRLAM/ECMWEF nonhydrostatic
dynamical core, which was developed by Méteo-France and
their ALADIN partners and later incorporated into the
ECMWF model and also adopted by HIRLAM.

> ECMWF




Numerical solution

® Two-time-level, semi-implicit, semi-Lagrangian.

® Semi-implicit procedure with two reference states, with
respect to gravity and acoustic waves, respectively.

® The resulting Helmholtz equation can be solved (subject
to some constraints on the vertical discretization) with a
direct spectral method, that is, a mathematical
separation of the horizontal and vertical part of the linear
problem in spectral space, with the remainder
representing at most a pentadiagonal problem of
dimension NLEV?. Non-linear residuals are treated
explicitly (or iteratively implicitly)!

(Robert, 1972; Bénard et al 2004,2005,2010)

> ECMWF




The spectral transform method
Eliasen et. al (1970), Orszaag (1970)

Applied at ECMWEF for the last 30 years ...

Spectral semi-Lagrangian semi-implicit
(compressible) a viable option ?

-Computational efficiency on future MPP architectures ?
-Accuracy at cloud-resolving scales ?

-Suitability for the likely mixture of medium and high resolution
ensembles and ultra-high resolution forecasts ?

> ECMWF




The Gaussian grid About 30% reduction in number of point:

id o

-

Fullgid

Reduction in the number of Fourier points at high latitudes is possible because
associated Legendre polynomials are very small near the poles for large m.

Note: number of points nearly equivalent to quasi-uniform icosahedral

grid cells of the ICON model.
S ECMWF




Cost of the spectral transform method

® FFT can be computed as C*N*log(N) where C is a small
positive number and N is the cut-off wave number in the
triangular truncation.

® Ordinary Legendre transform is O(N?) but can be
combined with the fields/levels such that the arising
matrix-matrix multiplies make use of the highly optimized
BLAS routine DGEMM.

® But overall cost is O(N3) for both memory and CPU time
requirements.

Desire to use a fast Legendre transform where the cost is
proportional to C*N*log(N) with C << N

and thus overall cost N°*log(N)

> ECMWF




Fast Legendre Transform (FLT)

® The algorithm proposed in (Tygert, 2008,2010) suitably fits into the
IFS transform library by simply replacing the matrix-matrix multiply
DGEMM call with a BUTTERFLY_MATRIX_MULT call plus slightly
more expensive pre-computations.

® (1) Instead of the recursive Cuppen divide-and-conquer algorithm
(Tygert, 2008) we use the so called butterfly algorithm (O’Neil et al,
2009; Tygert, 2010) based on a matrix compression technique via
rank reduction with a specified accuracy to accelerate the arising
matrix-vector/matrix multiplies (sub-problems still use DGEMM).

® (2) We apply the matrix compression directly on the matrix of the
associated polynomials, which reduces the required precomputa-
tions and eliminates the need to apply FMM (fast multipole method)
accelerated interpolations. Notably, the latter were an essential part
of the proposed FLT in Suda and Takami (2001).

> ECMWF




The butterfly compression
(O’Neil, Woolfe, Rokhlin, 2009; Tygert 2010) With each level |,

double the columns
and half the rows

|=0 |=2
=1 =3

A OECMWFF



. . . 500000
Floating point operations
per time-step in Gflop 400000
Inverse transform of 300000
single field/level O control
200000 @ butterfly
100000
0
799 1279 2047 3999 7999
Wallclock time in seconds 8
6
4 Odgemm
@ butterfly
inverse transform of 10 fields, 2
offline test environment

2047 3999 10000
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Selected projects to prepare for exascale
computing in Meteorology (NWP)

® [COMEX — ICOsahedral grid Models for EXascale Earth
system simulations (2011-2014)

® Gung-Ho — Development of the Next Generation Dynamical
Core for the UK MetOffice (2 phases, 2011-2013, 2013-2016)

® CRESTA — Collaborative Research into Exascale
Systemware, Tools & Applications (2011-2014)

> ECMWF




T3999 6h forecast - inverse transforms:
CPU time vs. wave number
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T3999 6h forecast - inverse transforms:
Floating point operations vs. wave
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Why is Matrix Multiply (DGEMM) so efficient?
VECTOR SCALAR / CACHE

— n+—

V|, is vector
register length

(m*n)+(m+n)
< # registers

VL FMA's m*n FMA’s
(VL +1) LD’s m+n LD’s
' rTn - .
FMA's ~= LD’s FMA's >>LD’s

CREST@
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