

New Developments with the TotalView Debugger: Scalable messaging and support for the Intel Xeon Phi

Chris Gottbrath, Product Manager Oct 3rd, 2012

What is TotalView?

Application Analysis and Debugging Tool: Code Confidently

- Debug and Analyze C/C++ and Fortran on Linux, Unix or Mac OS X
- Laptops to supercomputers (BG, Cray)
- Makes developing, maintaining and supporting critical apps easier and less risky

Major Features

- Easy to learn graphical user interface with data visualization
- Parallel Debugging
 - MPI, Pthreads, OpenMP, GA, UPC
 - CUDA and OpenACC
- Includes a Remote Display Client freeing you to work from anywhere
- Memory Debugging with MemoryScape
- Deterministic Replay Capability included on Linux/x86-64
- Non-interactive Batch Debugging with TVScript and the CLI
- TTF & C++View to transform user defined objects

What Is MemoryScape?

Runtime Memory Analysis : Eliminate Memory Errors

- Detects memory leaks before they are a problem
- Explore heap memory usage with powerful analytical tools
- Use for validation as part of a quality software development process

Major Features

- Included in TotalView, or Standalone
- Detects
 - Malloc API misuse
 - Memory leaks
 - Buffer overflows
- Supports
 - C, C++, Fortran
 - Linux, Unix, and Mac OS X
 - MPI, pthreads, OMP, and remote apps
- Low runtime overhead
- Easy to use
 - Works with vendor libraries
 - No recompilation or instrumentation

Deterministic Replay Debugging

Reverse Debugging: Radically simplify your debugging

- Captures and Deterministically Replays Execution
 - Not just logging or "checkpoint and restart"
- Eliminate the Restart Cycle and Hard-to-Reproduce Bugs
- Step Back and Forward by Function, Line, or Instruction

Specifications

- A feature included in TotalView on Linux x86 and x86-64
 - No recompilation or instrumentation
 - Explore data and state in the past just like in a live process, including C++View transformations
- Replay on Demand: enable it when you want it
- Supports MPI on Ethernet, Infiniband, Cray XE Gemini
- Supports Pthreads, and OpenMP

Scalability Collaboration

- Collaboration with LLNL
 - Goal is Petascale Parallel Debugger Scalability
 - MRNet product R & D
 - Tree overlay network
 - Multi-platform:
 - BlueGene/Q
 - Cray XT/XE/XK
 - Linux Cluster
 - Status
 - MRNet infrastructure in place
 - Currently optimizing startup and individual operations to use MRNet
 - Significant measured improvements (5x, 20x) in performance
 - Will be available to select customers in 8.11

Flat Vector of Servers Infrastructure Model

MRNET Infrastructure Model

Solution: TotalView/MRNet Trees on the IO Nodes

128 CNs 1 ION

TotalView for CUDA

Characteristics

- Full visibility of both Linux threads and GPU device threads
- Fully represent the hierarchical memory
- Supports Unified Virtual Addressing and GPUDirect
- Thread and Block Coordinates
- Device thread control
- Handles CUDA function inlining and CUDA stacks
- Support for C++ and inline PTX
- Reports memory access errors
- Handles CUDA exceptions
- Multi-Device Support
- Can be used with MPI
- Supports CUDA 3.2, 4.0 and 4.1

Debugging CUDA with Totalview

Navigate freely through your code

Negative IDs indicate CUDA Threads

Full Thread and Device information in Stack Frame Pane

Support for CUDA 3.2, 4.0, and 4.1

GPU Device Status Display

- Display of PCs across SMs, Warps and Lanes
- Updates as you step
- Shows what hardware is in use
- Helps you map between logical and hardware coordinates

CUDA Variables

Storage qualifiers appear in the data type

TotalView for OpenACC

- Step host & device
- View variables
- Set breakpoints

Compatibility with Cray CCE 8 OpenACC

TotalView for MIC

- Support Key Intel MIC usage models
 - Native Mode
 - With MPI
 - Offload Directives
 - Similar to GPU
 - Multi-device
- User Interface
 - MPI Debugging Features
 - Process Control
 - View Across
 - Shared Breakpoints
 - Heterogeneous Debugging
 - Debug Both Xeon and Xeon-Phi Processes
- Usage
 - No special settings or set up

TVScript Overview

- Gives you non-interactive access to TotalView's capabilities
- Useful for
 - Debugging in batch environments
 - Watching for intermittent faults
 - Parametric studies
 - Automated testing and validation
- TVScript is a script (not a scripting language)
 - It runs your program to completion and performs debugger actions on it as you request
 - Results are written to an output file
 - No GUI
 - No interactive command line prompt

TVScript Syntax

- tvscript syntax:
 - tvscript [options] [filename] [-a program_args]
- Options express ("event"," action") pairs
 - Typical events
 - Action_point
 - Any_memory_event
 - Guard_corruption
 - error
 - Typical actions
 - Display_backtrace [-level level-num] [num_levels] [options]
 - List leaks
 - Save_memory
 - Print [-slice {slice_exp] {variable | exp}

Example

```
•! Print
•! Process:
   ./server (Debugger Process ID: 1, System ID: 12110)
   Debugger ID: 1.1, System ID: 3083946656
•! Time Stamp:
   06-26-2008 14:04:09
•! Triggered from event:
   actionpoint
•! Results:
    foreign addr = {
     sin_family = 0x0002 (2)
     sin\_port = 0x1fb6 (8118)
     sin_addr = {
       s addr = 0x6658a8c0 (1717086400)
     sin_zero = ""
```


Case Study 2: Weather and Climate Modeling

A technique for statistical comparison of arrays using TVScript

Jacob Wiseman Poulsen
Danish Meteorological Institute

Context

- Requirement to ensure the accuracy of very complex meteorological codes with rich histories (20+ years)
- Periodic comparative study of results
 - Many compilers, multiple platforms
 - Automake with different compiler options
 - With and without various different parallelism (MPI, OpenMP, GPU, etc)
 - Exercise different decompositions
- Looking at numerical robustness and correctness of solution
 - Examine results statistically
 - Compare pointwise time series results to observations at a weather station

Debugging and Validation Framework

- Goal: easily gathering statistical and variable information
- Based on f90 comments in the following format

! TVSCRIPT : dprint [level] printargument

! TVSCRIPT : dprintstat [level] printargument

! TVSCRIPT : statistics [level]

! TVSCRIPT : cmd [level] cmdarg

- Together with a driver script that parses these arguments and turns them into TVScript event action pairs
 - The event location is a breakpoint with a position based on the comment
 - The action depends on the particular comment

Example 1

Code Annotation

```
integer(4), parameter :: nsize=200000
do i=1,nsize,2
    asum(i)=-1.0_8
enddo
    do i=1,nsize-1,2
    asum(i+1)=1000000000000_8
    enddo
! TVSCRIPT: dprintstats asum
    call proper_sum(nsize,asum)
    x=0
    do i=1,nsize
    x=x+asum(i)
enddo
```

Output

jwp@munin-1:~> ./runtv.sh
Parsing test_sum.f90 for tvscript comments
TVSCRIPT: CMD LEVEL= with arg=dprint -stats asum in test_sum.f90#54

Count: 200000 Zero Count: 0

Sum: 9.999999999991e+16

Minimum: -1

 Maximum:
 100000000000

 Median:
 4999999999.5

 Mean:
 499999999999.955

 Standard Deviation:
 500001250005.604

First Quartile: -1

Third Quartile: 1000000000000

Lower Adjacent: -1

Upper Adjacent: 1000000000000

NaN Count: 0
Infinity Count: 0
Denormalized Count: 0

Checksum: 3476

wp@munin-1:~>

Example 2 and 3

dprint

! TVSCRIPT: dprint cmod_arrays`temp(1)%p(924:927);

Prints a small subset of the temperature array

dprintstat

! TVSCRIPT: dprintstat cmod_arrays`temp(1)%p(2:);

prints statistical information about the temperature in the part of the array indicated

TotalView Remote Display Client

- The Remote Display Client offers users the ability to easily set up and operate a TotalView debug session that is running on another system.
- Provides for a connection that is
 - Easy
 - Fast
 - Secure
- The Remote Display Client is available for:
 - Linux x86
 - Linux x86-64
 - Windows XP
 - Windows Vista
 - Windows 7
 - Mac OS X Leopard and Snow Leopard
- The Client also provides for submission of jobs to batch queuing systems PBS Pro and Load Leveler

Multi-Dimensional Array Viewer

- See your arrays on a "Grid" display
- 2-D, 3-D... N-D
- Arbitrary slices
- Specify data representation
- Windowed data access
 - Fast

C++View

- C++View is a simple way for you to define type transformations
 - Simplify complex data
 - Aggregate and summarize
 - Check validity
- Transforms
 - Type-based
 - Compose-able
 - Automatically visible
- Code
 - C++
 - Easy to write
 - Resides in target
 - Only called by TotalView

What is ThreadSpotter?

- Runtime Cache Performance Optimization Tool: Tune into the Multi-Core Era
 - Realize More of the Performance Offered by Multi/Many-Core Chips
 - Quickly Detects and Prioritizes Issues -- and then Provides Usable Advice!
 - Brings Cache Performance Into Reach for Every Developer
 - Makes Experienced Cache Optimizers Hyper-Efficient
- Features
 - Supports Linux x86/x86-64, Windows
 - Any compiled code
 - Runtime Analysis
 - Low overhead
 - Cache Modeling
 - Prioritizes Issues
 - Identifies Problem Lines of Code
 - Provides Advice
 - Explanations
 - Examples
 - Detailed statistics (if desired)

Inefficient Loop Nesting

Explanation

Partially Used Structure

Explanation

Alignment Problem

Explanation

Thank you!

Rogue Wave Software

Developing parallel, data-intensive applications is hard. We make it easier.

Chris.Gottbrath@roguewave.com

Neil.Foster@roguewave.com

