Experiences Porting NOAA Weather
Model FIM to Intel MIC

2012 ECMWEF workshop on High Performance Computing in Meteorology

Outline

* Porting methodology and validation
 MIC features and programming modes

e Status of FIM model on MIC

 Techniques to speed up FIM on MIC (OpenMP
and single-core)

* NO discussion of absolute performance on
MIC (non-disclosure agreement with Intel)

Why FIM instead of NIM?

* OpenMP threading is the best way to get good
performance on MIC

* FIM was already threaded with OpenMP

Porting Methodology

e Extract 1 time step from full model run on
CPU

— Save required IC info for each kernel

— Save end-of-timestep info for verification

e Extract model code for kernel of interest
— Build driver to read in IC info and pass to kernel

— Create subroutine to compare verification data to
kernel results

Porting Methodology (cont’d)

e Gather kernel timing info
— gptl_lite

 Modify kernel code (e.g. add directives) for
new hardware

* Run and compare results and timing

— Gather stats about max absolute and relative
differences

Validation

e Bit-for-bit is best, but roundoff differences are
likely

* How do you know you’re getting the right
answer?

— Perturb the initial conditions on “trusted”
hardware and compare results, or

— Use a different (but still trusted) compiler to
produce “trusted” differences

— Compare “trusted” diffs vs. “test” diffs

CPU performance comparison

Inverse run tine {1/s)

cnuity perfornance

1 * 3 L 1 L 1 1 I T T T T T T T T
nehalen 2,8 GHz ——
N westnere 3.9 GHz —<— A
1.2 sandybridge 2,6 GHz —#— L
interlagos_intel 2,2 GHz —&— o
1.1 [|_interlagos_pgi 2.2 GHz % o K .
T T
1} Ed .
8.9 | ¥ .
0.8 [A -
.»-‘xv..l'
8.7 | L -
"(- o
e ~A——g

" > =5 \ N

- -"B-.- ” .
---"B.-]]

-~ '-E- i .'.t".
- #
8 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 16 11 12 13 14 15 16

Workshop on High Performance Computing

Full dycore scaling on a node

FIH dynanics perfornance on SandyBridge

8.17

T T T T T T T T T T T

full;dgco;e ——#——I
8.16 A

8.15 ot]

.14 yd E
8.13 - - -
8.12 4 -
8.11 pd 1
8.1 S |
8.89 - -]
0.88 - -]
8.87 -
8.86 - ///// 1
8.85 | v §
8.84 ///// E
8.83 - -
0.62
8.61

Inverse run tine {1/s)
+

N\

T
1

Workshop on High Performance Computing 8

MIC Features (Public)

Brand Name

Product Available

Physical Core Count

Logical Cores per Physical Core
Vector register size

10 Bus

Memory

Peak FLOPS

Programming

Intel® Xeon Phi™ coprocessor
(codenamed Knights Corner)

Shipping production 22nm in 2012
More than 50

4

512 bits

PCle

8 GB GDDR5

Greater than 1 TFLOP (DP)

Linux OS. IP addressable. Intel Developer
tools. Common source code with CPU

MIC programming modes

e Offload

— Host offloads part of calculation to coprocessor

— Compiler directives describe how to move data
* Native

— Everything runs on the coprocessor

— Use existing OpenMP directives

— NO code mods required to get it running

— Can use multiple cores via OpenMP and/or MPI

10

Offload Mode

MPI

Node 0

Node 1

Host Host

IN OouT IN ouT
PCle PCle

Coprocessor Coprocessor

Workshop on High Performance Computing 11

Native Mode

MPI

Node 0

Host

PCle

Coprocessor Coprocessor

Workshop on High Performance Computing 12

Mods required for MIC (native)

* No source code mods required
e Add —mmic compiler flag

 Some compiler flags not supported or
generate very slow code

13

Mods required for MIC (offload)

* Declare data to live in offloaded region:
IDIRS OPTIONS /OFFLOAD_ATTRIBUTE_TARGET=MIC

<data definitions>
IDIRS END OPTIONS

 Declare subroutine to be offloadable:
IDIRS ATTRIBUTES OFFLOAD:MIC :: <routine>

* Run region in offload mode:
IDIR$S OFFLOAD BEGIN TARGET(MIC:0) IN(..) OUT(..)

<code to run in offloaded region>
IDIRS END OFFLOAD

: w 3
: :

Workshop on High Performance Computing 14

Current status of FIM on MIC

4 individual kernels from FIM dynamics
extracted, running, and validated in native
mode (all but 1 can be made bit-for-bit)

1 kernel running and validated in offload
mode (bit-for-bit)

Full FIM dynamics running and validated as a
standalone kernel in native and offload mode

Getting FIM running in native mode required
zero mods to source code

15

Effect of mods to speedup cnuity
kernel on MIC

cnuity on HIC: effect of conpiler flags and code nods

precise_nofna ——
nofna —¢—
fast —%—

Firsttouch_scatter —5—

vector_scatter

Inverse run tine {1/s)

OHP_NUH_THREADS

Workshop on High Performance Computing 16

Vectorization speedup on SandyBridge
(X, Y axes differ from previous slide)

cnuity perfornance on SandyBridge: novector vs, vector

1 - 3 1 1 T T T T T T T T T T T T
novector ——
vector e
1 . 2 i 7 1
Ao T
e
1.1 e .
-~ < -
1r o i |
P e
-~ A=
~ 8,9 bre - 1
%] — ~
-« 0.8 A _+-'“'/-' .
':,‘ 8.7 -F"f - |
(=4 b T -
E a - 6 s '_A_,-"/+ -
~
©
7] .
[o P E
g 8.5 s
H 8.4 P 7
(_/+
8.3 [= 1
J/"/
8.2 /~ 4 1
P x'/'/
8.1 1

v Workshop on High Performance Computing 17

Vectorization example (orig)

1SOMP PARALLEL DO PRIVATE (k,edg) SCHEDULE (runtime)
do ipn=ips,ipe
do k=1,nvl
anti_tndcy(k,ipn) = 0.

do edg=1,nprox(ipn) <-- Compiler only considers inner loop for vectorization

anti_ tndcy(k,ipn) = anti_tndcy(k,ipn) + antifx(k,edg,ipn)
end do

anti tndcy(k,ipn) = -anti_ tndcy(k,ipn) *rarea (ipn)
dp_tndcy(k,ipn,nf) = dplo_tndcy(k,ipn,nf) + anti_tndcy(k,ipn)
delp(k,ipn) = delp(k,ipn) + adbashl*dp tndcy(k,ipn,nf) + &
adbash2*dp tndcy(k,ipn,of) + &
adbash3*dp tndcy (k,ipn,vof)
end do
.. end do

v Workshop on High Performance Computing 18

Vectorization example (fixed)

1SOMP PARALLEL DO PRIVATE (k,edg) SCHEDULE (runtime)
do ipn=ips,ipe
do k=1,nvl
anti_tndcy(k,ipn) = 0.
end do
do edg=1,nprox(ipn)
do k=1,nvl
anti_ tndcy(k,ipn) = anti_tndcy(k,ipn) + antifx(k,edg,ipn)
end do
end do
do k=1,nvl
anti tndcy(k,ipn) = -anti_ tndcy(k,ipn) *rarea(ipn)
dp_tndcy(k,ipn,nf) = dplo_tndcy(k,ipn,nf) + anti_tndcy(k,ipn)
delp(k,ipn) = delp(k,ipn) + adbashl*dp tndcy(k,ipn,nf) + &
adbash2*dp tndcy(k,ipn,of) + &
adbash3*dp tndcy (k,ipn,vof)
end do
. end do

v Workshop on High Performance Computing 19

Notes on Vectorization

* Only inner loops vectorize

 MIC vector length (512-bit) exceeds even
SandyBridge (256-bit)

e a**ph does not vectorize
* Use —vec-report3

e “if” tests can cause problems

— “condition may protect eXCepl—iOnn
~ —Fix with “IDIR$ VECTOR ALWAYS”

20

How to make MIC code run well

* Vectorize
— 512 bit vector register

e Use lots of OpenMP threads
— Up to 4X the number of physical cores

* Memory affinity
— Add code to apply “first touch”
— Works best with “schedule(static)”

21

How to make MIC code run well
(cont’d)
* Minimize PCle transfers

 Minimize I/O issued from MIC

* Don’t use —fp-model precise

— ~2X performance hit using this flag with FIM on
MIC

22

Notes on OpenMP

* Experiment with SKMP_AFFINITY

I/

— “compact”, “scatter”, “balanced”

* Experiment with SOMP_SCHEDULE

— Only takes effect with when the attribute
“schedule(runtime)” is specified in threaded loops

— Default is “static”

— Some success with “guided”

23

Where Next?

 Move offload I/O to host
* Multiple time steps

* Multiple KNC cards

* OpenMP in physics

* 1/0O

24

Summary

* OpenMP is the best way to get performance on
MIC

e Whether MIC or GPU, it matters which CPU
architecture is being compared to when assessing
speedup

e 2 methods to run code on MIC: “offload” and
“native”

* FIM benefits greatly from vectorization on MIC
- helps CPU also

25

Contributors

 Mike Greenfield (Intel)
* Ruchira Sasanka (Intel)

e Karthik Raman (Intel)
* Craig Tierney (NOAA)

26

