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Outline

* Porting methodology and validation
 MIC features and programming modes

e Status of FIM model on MIC

 Techniques to speed up FIM on MIC (OpenMP
and single-core)

* NO discussion of absolute performance on
MIC (non-disclosure agreement with Intel)




Why FIM instead of NIM?

* OpenMP threading is the best way to get good
performance on MIC

* FIM was already threaded with OpenMP




Porting Methodology

e Extract 1 time step from full model run on
CPU

— Save required IC info for each kernel

— Save end-of-timestep info for verification

e Extract model code for kernel of interest
— Build driver to read in IC info and pass to kernel

— Create subroutine to compare verification data to
kernel results




Porting Methodology (cont’d)

e Gather kernel timing info
— gptl_lite

 Modify kernel code (e.g. add directives) for
new hardware

* Run and compare results and timing

— Gather stats about max absolute and relative
differences




Validation

e Bit-for-bit is best, but roundoff differences are
likely

* How do you know you’re getting the right
answer?

— Perturb the initial conditions on “trusted”
hardware and compare results, or

— Use a different (but still trusted) compiler to
produce “trusted” differences

— Compare “trusted” diffs vs. “test” diffs




CPU performance comparison
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Full dycore scaling on a node

FIH dynanics perfornance on SandyBridge
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MIC Features (Public)

Brand Name

Product Available

Physical Core Count

Logical Cores per Physical Core
Vector register size

10 Bus

Memory

Peak FLOPS

Programming

Intel® Xeon Phi™ coprocessor
(codenamed Knights Corner)

Shipping production 22nm in 2012
More than 50

4

512 bits

PCle

8 GB GDDR5

Greater than 1 TFLOP (DP)

Linux OS. IP addressable. Intel Developer
tools. Common source code with CPU



MIC programming modes

e Offload

— Host offloads part of calculation to coprocessor

— Compiler directives describe how to move data
* Native

— Everything runs on the coprocessor

— Use existing OpenMP directives

— NO code mods required to get it running

— Can use multiple cores via OpenMP and/or MPI
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Offload Mode
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Native Mode

MPI

Node 0

Host

PCle

Coprocessor Coprocessor

Workshop on High Performance Computing 12



Mods required for MIC (native)

* No source code mods required
e Add —mmic compiler flag

 Some compiler flags not supported or
generate very slow code
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Mods required for MIC (offload)

* Declare data to live in offloaded region:
IDIRS OPTIONS /OFFLOAD_ATTRIBUTE_TARGET=MIC

<data definitions>
IDIRS END OPTIONS

 Declare subroutine to be offloadable:
IDIRS ATTRIBUTES OFFLOAD:MIC :: <routine>

* Run region in offload mode:
IDIR$S OFFLOAD BEGIN TARGET(MIC:0) IN(..) OUT(..)

<code to run in offloaded region>
IDIRS END OFFLOAD

: w 3
: :
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Current status of FIM on MIC

4 individual kernels from FIM dynamics
extracted, running, and validated in native
mode (all but 1 can be made bit-for-bit)

1 kernel running and validated in offload
mode (bit-for-bit)

Full FIM dynamics running and validated as a
standalone kernel in native and offload mode

Getting FIM running in native mode required
zero mods to source code
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Effect of mods to speedup cnuity
kernel on MIC

cnuity on HIC: effect of conpiler flags and code nods

precise_nofna ——
nofna —¢—
fast —%—

Firsttouch_scatter —5—

vector_scatter
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Vectorization speedup on SandyBridge
(X, Y axes differ from previous slide)

cnuity perfornance on SandyBridge: novector vs, vector
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Vectorization example (orig)

1SOMP PARALLEL DO PRIVATE (k,edg) SCHEDULE (runtime)
do ipn=ips,ipe
do k=1,nvl
anti_tndcy(k,ipn) = 0.

do edg=1,nprox(ipn) <-- Compiler only considers inner loop for vectorization

anti_ tndcy(k,ipn) = anti_tndcy(k,ipn) + antifx(k,edg,ipn)
end do

anti tndcy(k,ipn) = -anti_ tndcy(k,ipn) *rarea (ipn)
dp_tndcy(k,ipn,nf) = dplo_tndcy(k,ipn,nf) + anti_tndcy(k,ipn)
delp(k,ipn) = delp(k,ipn) + adbashl*dp tndcy(k,ipn,nf) + &
adbash2*dp tndcy(k,ipn,of) + &
adbash3*dp tndcy (k,ipn,vof)
end do
.. end do
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Vectorization example (fixed)

1SOMP PARALLEL DO PRIVATE (k,edg) SCHEDULE (runtime)
do ipn=ips,ipe
do k=1,nvl
anti_tndcy(k,ipn) = 0.
end do
do edg=1,nprox(ipn)
do k=1,nvl
anti_ tndcy(k,ipn) = anti_tndcy(k,ipn) + antifx(k,edg,ipn)
end do
end do
do k=1,nvl
anti tndcy(k,ipn) = -anti_ tndcy(k,ipn) *rarea(ipn)
dp_tndcy(k,ipn,nf) = dplo_tndcy(k,ipn,nf) + anti_tndcy(k,ipn)
delp(k,ipn) = delp(k,ipn) + adbashl*dp tndcy(k,ipn,nf) + &
adbash2*dp tndcy(k,ipn,of) + &
adbash3*dp tndcy (k,ipn,vof)
end do
. end do
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Notes on Vectorization

* Only inner loops vectorize

 MIC vector length (512-bit) exceeds even
SandyBridge (256-bit)

e a**ph does not vectorize
* Use —vec-report3

e “if” tests can cause problems

— “condition may protect eXCepl—iOnn
~ —Fix with “IDIR$ VECTOR ALWAYS”
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How to make MIC code run well

* Vectorize
— 512 bit vector register

e Use lots of OpenMP threads
— Up to 4X the number of physical cores

* Memory affinity
— Add code to apply “first touch”
— Works best with “schedule(static)”
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How to make MIC code run well
(cont’d)
* Minimize PCle transfers

 Minimize I/O issued from MIC

* Don’t use —fp-model precise

— ~2X performance hit using this flag with FIM on
MIC
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Notes on OpenMP

* Experiment with SKMP_AFFINITY

I/

— “compact”, “scatter”, “balanced”

* Experiment with SOMP_SCHEDULE

— Only takes effect with when the attribute
“schedule(runtime)” is specified in threaded loops

— Default is “static”

— Some success with “guided”

23



Where Next?

 Move offload I/O to host
* Multiple time steps

* Multiple KNC cards

* OpenMP in physics

* 1/0O
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Summary

* OpenMP is the best way to get performance on
MIC

e Whether MIC or GPU, it matters which CPU
architecture is being compared to when assessing
speedup

e 2 methods to run code on MIC: “offload” and
“native”

* FIM benefits greatly from vectorization on MIC
- helps CPU also
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