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— Assimilation methods should be
— Accurate
—No bias
- Precise
— Use all available information in an optimal fashion
— Provide for dynamic error covariances
— Parallelizable
- Simple
— Tangent linear and adjoint models difficult to maintain
— All these criteria are difficult to meet simultaneously
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—  Optimum Interpolation
— Unbiased
— Parallelizable by domain decomposition
— Not precise — static error covariances
— No tangent linear or adjoint model

- 4DVAR
— Precise, but static error covariances
— Potentially biased — because of strong model constraint
— Not very parallelizable
— Tangent linear and adjoint models

6/2010
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— Weak constraint 4DVAR
— Precise, partially dynamic error covariance
— Potentially biased
— Computationally expensive — big control vector dimension
— Parallelizable — by domain decomposition in time ?
— Tangent linear and adjoint models

— Ensemble Kalman Filters
- Potentially unbiased
— Efficiently parallelizable
— Dynamic error covariance
— Not precise — ensemble small compared to state space dimension
— No tangent linear or adjoint models
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Extended and Variational Kalman
Filters
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INPUL: X, Vie+1, Ckr @kt 15 Ricr 1, Mgt 1, Kig1-

p o ._
X1 = Mpr1Xp

Ck+1 = My 11 CMp 1 + Qriq

, -1
Gr+1 = Ck+1Kk+1(Kk+1Ck+1Kk+1 + Rk+1)

e— P p
Xi+1 = Xppq T Gk+1()’k+1 — Kk+1xk+1)

Cir1 = Crrq — Gr41Ki41Crpq
Output: xp41, Criq

Where: Ci, 0,41, Ry+1 are covariance matrices of

Xi, €11, Engq FESPECtiVELy.
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Covariance error matrix propagation requires 0(n?)
flops

Covariance storage requires to store n? floating-
point or double-precision values

In the case of weather simulation dynamical
systems n =~ 1017, which makes the basic
formulations impossible to implement

Solution: provide a low-memory matrix approximation
supporting efficient matrix-vector multiplications
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— Variational Kalman Filter
— Precise — equivalent to EKF, hence dynamic error covariance
— Guaranteed to be stable
— Bias can be kept under control
— Not very parallelizable
— Tangent linear and adjoint models inherited from 4DVAR
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Consider an arbitrary matrix A

The task is to compute its “smallest” update D in terms of Frobenius norm
such that (A4 + D)v = y, where v and y is known pair of vectors and v is
nonzero.

Dv =y — Av =r,||D||4, - min
Consider a pair of vectors v and y.
The task is to find a symmetric positive definite matrix which maps v to y.
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Theorem. Let L be a nonsingular matrix, H = L-L%. Let y and v be an arbitrary
pair of vectors where v is nonzero. There is a symmetric positive definite matrix H,,
such that (Ho + H,)v = y, ifand only if yTv > 0. If there is such a matrix , then
H, =], JI, where

y'v

T
y — UTH UHCU (L )

y'v
vTH v

vIH v
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[ {(Sk' yk)» (Sk—l' yk—l): ey (Sk—m+1' yk—m+1)} ]

T R Line search
l algorithm
L-BFGS 2-loop ~
: > H,V X 04 <«
recursion KV K
i w l w
Iterative process:
Vik | Xi+1 = X — aH, Vfy
f(x) - cost function, f;, = f(x;). l
H, - inverse Hessian approximation.

a — step scale.

Xk+1
Sk =Xp+1 — Xy Yk = Vg1 — V.
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Input: xx, Y+1, C» Qr+1, Ric+1) ™ Mii1, K1
Xper1 = M1 (i)
Compute L-BFGS approximation By, ; of (C,fﬂ)_l,

where Cp,; = My11CMpyq + Qpyr.
Minimize with L-BFGS

(%) = W41 — K412 Ri41) " Wies1 — Kig1%)

P\ p=* p
T (x — xk+1) Bk+1(x — xk+1)

Define x, ., to be the minimizer from step 3 and

C,.1 to be the L-BFGS approximation of inverse
Hesslian of the problem on step 2.
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Assume that an approximation Bj_, for covariance C£, is available. Then
the EKF formulas can be approximated directly, which leads to the following
algorithm:

1. Compute prediction x! = M, (x£5%).
Define prediction covariance C}: = M Bj_ M + ngf'

Define A = KkC,kaT + ng, b=y, — ka,f.

o 1 .
2. Solve optimization problem ExTAx — bTx - min with respect to x

and compute a low-memory approximation B*~ A1

3. Compute state estimate xeSt = xk CpK x*, where x™ is solution for
the optimization problem from step 2.

4. Compute a low-memory approximation B}@E for the estimate covariance

CESt = CF — CYK{ B*K; Cy, .

Matrix C§°t = €}, — C' K B*K,,C}, is not guaranteed to remain positive
definite. Therefore, numerical instability may occur in some cases.
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Q Setting B* = A~! we get
Ce™t = Cf — CiKy (21 — B*A)B* K, C, = C;, — C K A"' Ky Cy, =
Cy — G.Ki.CY,
which is the exact formula from the EKF. Therefore, the Stabilized VKF still
mimics the basic EKF formulas.
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Quasigeostrophic 2-layer model
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Top layer

Bottom Iayer ~_
2
e
U, - constant zonal flow in the top layer. S(x,y) - orography term.

U, - constant zonal flow in the bottom layer. f, - Coriolis parameter.
D4 - undisturbed depth of the top layer.
D, - undisturbed depth of the bottom layer.
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M0 AP fOLA
g‘gé’lzg%’z‘gm’
foLS(x,y L
R, = 0 = po—.
S UDZ ﬁ IBO U
D1q4 _ D>q; — 0
Dt Dt ’

q, = VY1 — FL(Y1 — ) + By,
Q2 = VY, — F,(, — 1) + By + Rs.

Dt ot ax ' Uiay’

Vl/)i — (Ui, _ui)




Quasi-Geostrophic model: 2
review
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Diq1  Dyq

Dt Dt ’
q, = V4P, — FL(Y1 — P,) + By,
q2 = V>, — F,(Y, — 1) + By + Ry,

D_0- 0. 0
Dt ot ax ' oy’
Vi, = (vir _ul)

Apply 72 to the equation for g4, subtract F; times equation for g; and
F, times equation for g,:

Ve(Vep,) — (FL + F)(V2yY,) =
V2(q, — By) — F,(q1 — By) — F1(q2 — By — Rs)




Quasi-Geostrophic model:
Integration pipeline

> 42 (t + At)

o

Open your mind. LUT.

Lappeenranta

Wind operator:

2P, (t + At)

Y, (1) > Wind operator
Potential vortici
e y5(8); vy2(t)
d,2(L) Advection
|
L Solve Helmholz ] =2 Solve Poisson
equation | VYL (E + AL = equation

Define: 1, (t + At) = (G, — FET.LH )/ Fiy + Yy

Vi, = (v, —u;)
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Two-layer Quasi-Geostrophic model solved on a
cylindrical 40x20 domain

Spatial discretization steps A x =Ay = 300km
Time discretization step At = 21600s
Layer depths D; = 6000m, D, = 4000m
Orography term:

Gaussian hill

2000m high, 1000km wide at grid vertex (0,15)
Domain 12000km x 6000km



altitude

2000

1500

1000

500

longitude

Orography component

20

latitude
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Assimilation model, and tangent linear and adjoint
models:

The same settings as for simulation model

Different layer depths D; = 5500m, D, = 4500m
Initial state:

Propagate assimilation and “truth” models for two
weeks with one hour time step

Observation concept:

Observe sparse set of 100 grid vertices at every
assimilation step

Selection of the vertices observed at every
assimilation step remains unchanged



Experimental Design:
model error

2000
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Main diagonal hill
corresponds to in-layer
correlations between the
vertices.

Off diagonal hills
correspond to cross-layer
correlations

Small hills near the
corners reveal model’s
periodical nature
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Assimilation results
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Parallelization concerns with VKF
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— With respect to parallelization, VKF is similar to 4DVAR
— This means it is an inherently serial algorithm
- Both

- L-BFGS itself,

— the alternating serial calls to the tangent linear and
adjoint models, and

— the alternation between 3DVAR-like purely spatial
observation processing and 4DVAR-like error
covariance update process

— are all serial
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— On the other hand, the serial complexity of VKF is almost
identical to that of 4DVAR, and it may be even less: it consists
of the same operations as 4DVAR, organized in a different
manner

— So Instead of a variational form of EKF, VKF can also be seen
as an efficient way to provide 4DVAR with

— A dynamic error covariance matrix
— A way to counter model bias without covariance inflation

— But VKF can be run - just like 4DVAR - in an Ensemble of
Data Assimilations EDA

— This will yield as ensemble from the right posterior distribution
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Conclusions
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- Assimilation methods should be
— Accurate
- Precise
- Parallelizable
- Simple
— Stabilized Variational Kalman Filter is
— Accurate
- Precise
— Not very parallelizable — but serves well in EDA
- Simple, if ADVAR has been in use before
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- VKF has been implemented in the Lappeenranta version
of ECMWF OOPS, dubbed LOOPS

- Integration with IFS is possible once it is brought
Into OOPS - see the talk by Yannick and Mike in
Session 11 tomorrow ©
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Thank Youl!
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