A stable and accurate Variational Kalman Filter

Alexander Bibov, Heikki Haario, Harri Auvinen, John Bardsley, Tuomo Kauranne

Lappeenranta University of Technology / University of Montana

ECMWF Workshop on High-performance Computing in Meteorology October 2, 2012

Overview

- Desirable properties of assimilation methods
- Variational methods and Ensemble Kalman filters
- Deterministic Kalman filters:
 - Classical Extended Kalman filter
 - Variational reformulation of the Kalman filter
- Quasi-Geostrophic model: integration and implementation
- Parallelization concerns
- Conclusions

Desirable properties of assimilation methods

- Assimilation methods should be
- Accurate
 - No bias
- Precise
 - Use all available information in an optimal fashion
 - Provide for dynamic error covariances
- Parallelizable
- Simple
 - Tangent linear and adjoint models difficult to maintain
- All these criteria are difficult to meet simultaneously

Variational methods and Ensemble Kalman Filters

- Optimum Interpolation
 - Unbiased
 - Parallelizable by domain decomposition
 - Not precise static error covariances
 - No tangent linear or adjoint model
- 4DVAR
 - Precise, but static error covariances
 - Potentially biased because of strong model constraint
 - Not very parallelizable
 - Tangent linear and adjoint models

Variational methods and Ensemble Kalman Filters

- Weak constraint 4DVAR
 - Precise, partially dynamic error covariance
 - Potentially biased
 - Computationally expensive big control vector dimension
 - Parallelizable by domain decomposition in time ?
 - Tangent linear and adjoint models
- Ensemble Kalman Filters
 - Potentially unbiased
 - Efficiently parallelizable
 - Dynamic error covariance
 - Not precise ensemble small compared to state space dimension
 - No tangent linear or adjoint models

Extended and Variational Kalman Filters

Kalman Filters: Extended Kalman Filter

Input:
$$x_k, y_{k+1}, C_k, Q_{k+1}, R_{k+1}, M_{k+1}, K_{k+1}$$
.
1. $x_{k+1}^p \coloneqq M_{k+1} x_k$
2. $C_{k+1}^p \coloneqq M_{k+1} C_k M'_{k+1} + Q_{k+1}$
3. $G_{k+1} \coloneqq C_{k+1}^p K'_{k+1} (K_{k+1} C_{k+1}^p K'_{k+1} + R_{k+1})^{-1}$
4. $x_{k+1} \coloneqq x_{k+1}^p + G_{k+1} (y_{k+1} - K_{k+1} x_{k+1}^p)$
5. $C_{k+1} \coloneqq C_{k+1}^p - G_{k+1} K_{k+1} C_{k+1}^p$
Output: x_{k+1}, C_{k+1}
Where: C_k, Q_{k+1}, R_{k+1} are covariance matrices of $x_k, \varepsilon_{k+1}^p, \varepsilon_{k+1}^o$ respectively.

Extended Kalman Filter: drawbacks

- Covariance error matrix propagation requires $O(n^3)$ flops
- Covariance storage requires to store n² floatingpoint or double-precision values
- In the case of weather simulation dynamical systems $n \approx 10^{17}$, which makes the basic formulations impossible to implement

Solution: provide a low-memory matrix approximation supporting efficient matrix-vector multiplications

Variational Kalman Filter VKF

- Variational Kalman Filter
 - Precise equivalent to EKF, hence dynamic error covariance
 - Guaranteed to be stable
 - Bias can be kept under control
 - Not very parallelizable
 - Tangent linear and adjoint models inherited from 4DVAR

Low-memory matrix approximations

- Consider an arbitrary matrix A
- The task is to compute its "smallest" update *D* in terms of Frobenius norm such that (A + D)v = y, where *v* and *y* is known pair of vectors and *v* is nonzero.

$$Dv = y - Av = r$$
, $||D||_{Fr}^2 \rightarrow min$

- Consider a pair of vectors *v* and *y*.
- The task is to find a symmetric positive definite matrix which maps v to y.

Low-memory matrix approximations: BFGS update

Theorem. Let L_C be a nonsingular matrix, $H_C = L_C L_C^T$. Let y and v be an arbitrary pair of vectors where v is nonzero. There is a symmetric positive definite matrix H_+ , such that $(H_C + H_+)v = y$, if and only if $y^Tv > 0$. If there is such a matrix, then $H_+ = J_+J_+^T$, where

$$J_{+} = L_{C} + \frac{\left(y - \sqrt{\frac{y^{T}v}{v^{T}H_{C}v}}H_{C}v\right)\left(L_{C}^{T}v\right)^{T}}{\sqrt{\frac{y^{T}v}{v^{T}H_{C}v}}v^{T}H_{C}v}$$

Variational Kalman Filter

Input:
$$x_k, y_{k+1}, C_k, Q_{k+1}, (R_{k+1})^{-1}, M_{k+1}, K_{k+1}$$
.
 $x_{k+1}^p \coloneqq M_{k+1}(x_k)$

2. Compute L-BFGS approximation B_{k+1}^* of $(C_{k+1}^p)^{-1}$, where $C_{k+1}^p \coloneqq M_{k+1}C_kM'_{k+1} + Q_{k+1}$.

3. Minimize with L-BFGS $l(x) = (y_{k+1} - K_{k+1}x)'(R_{k+1})^{-1}(y_{k+1} - K_{k+1}x) + (x - x_{k+1}^p)'B_{k+1}^*(x - x_{k+1}^p)$

4. Define x_{k+1} to be the minimizer from step 3 and C_{k+1} to be the L-BFGS approximation of inverse Hessian of the problem on step 2.

Use of LBFGS in stabilized VKF

Assume that an approximation $B_{k-1}^{\#}$ for covariance C_{k-1}^{est} is available. Then the EKF formulas can be approximated directly, which leads to the following algorithm:

- 1. Compute prediction $x_k^p = \mathcal{M}_k(x_k^{est})$. Define prediction covariance $C_k^p = M_k B_{k-1}^{\#} M_k^T + C_{\mathcal{E}_k^p}$. Define $A = K_k C_k^p K_k^T + C_{\mathcal{E}_k^p}$, $b = y_k - K_k x_k^p$.
- 2. Solve optimization problem $\frac{1}{2}x^TAx b^Tx \rightarrow min$ with respect to xand compute a low-memory approximation $B^* \approx A^{-1}$.
- 3. Compute state estimate $x_k^{est} = x_k^p + C_k^p K_k^T x^*$, where x^* is solution for the optimization problem from step 2.
- 4. Compute a low-memory approximation $B_k^{\#}$ for the estimate covariance $C_k^{est} = C_k^p C_k^p K_k^T B^* K_k C_k^p$.

Matrix $C_k^{est} = C_k^p - C_k^p K_k^T B^* K_k C_k^p$ is not guaranteed to remain positive definite. Therefore, numerical instability may occur in some cases.

Stabilized VKF

□ Setting $B^* = A^{-1}$ we get $C_k^{est} = C_k^p - C_k^p K_k^T (2I - B^*A) B^* K_k C_k^p = C_k^p - C_k^p K_k^T A^{-1} K_k C_k^p = C_k^p - G_k K_k C_k^p$,

which is the exact formula from the EKF. Therefore, the Stabilized VKF still mimics the basic EKF formulas.

Quasigeostrophic 2-layer model

Quasi-Geostrophic model: review

$$\begin{split} \dot{g} &= g \, \frac{\Delta \theta}{\bar{\theta}}, F_1 = \frac{f_0^2 L^2}{\dot{g} D_1}, F_2 = \frac{f_0^2 L^2}{\dot{g} D_2}, \\ R_s &= \frac{f_0 LS(x, y)}{U D_2}, \beta = \beta_0 \frac{L}{U}. \\ &\frac{D_1 q_1}{D t} = \frac{D_2 q_2}{D t} = 0; \\ q_1 &= \nabla^2 \psi_1 - F_1(\psi_1 - \psi_2) + \beta y, \\ q_2 &= \nabla^2 \psi_2 - F_2(\psi_2 - \psi_1) + \beta y + R_s. \end{split}$$

$$\frac{D_i}{Dt} = \frac{\partial}{\partial t} + u_i \frac{\partial}{\partial x} + v_i \frac{\partial}{\partial y},$$
$$\nabla \psi_i = (v_i, -u_i)$$

Quasi-Geostrophic model: review

$$\begin{aligned} \frac{D_1 q_1}{Dt} &= \frac{D_2 q_2}{Dt} = 0, \\ q_1 &= \nabla^2 \psi_1 - F_1(\psi_1 - \psi_2) + \beta y, \\ q_2 &= \nabla^2 \psi_2 - F_2(\psi_2 - \psi_1) + \beta y + R_s, \\ \frac{D_i}{Dt} &= \frac{\partial}{\partial t} + u_i \frac{\partial}{\partial x} + v_i \frac{\partial}{\partial y}, \\ \nabla \psi_i &= (v_i, -u_i) \end{aligned}$$

Apply ∇^2 to the equation for q_1 , subtract F_1 times equation for q_1 and F_2 times equation for q_2 :

$$\nabla^{2}(\nabla^{2}\psi_{1}) - (F_{1} + F_{2})(\nabla^{2}\psi_{1}) = \nabla^{2}(q_{1} - \beta y) - F_{2}(q_{1} - \beta y) - F_{1}(q_{2} - \beta y - R_{s})$$

Quasi-Geostrophic model: integration pipeline

Experimental Design: simulation model

- Two-layer Quasi-Geostrophic model solved on a cylindrical 40x20 domain
- Spatial discretization steps $\triangle x = \triangle y = 300 km$
- Time discretization step $\triangle t = 21600s$
- Layer depths $D_1 = 6000m$, $D_2 = 4000m$
- Orography term:
 - Gaussian hill
 - 2000m high, 1000km wide at grid vertex (0, 15)
- Domain 12000km x 6000km

Experimental Design: orography component

Experimental Design: assimilation with a biased model

- Assimilation model, and tangent linear and adjoint models:
 - The same settings as for simulation model
 - Different layer depths $D_1 = 5500m$, $D_2 = 4500m$
- Initial state:
 - Propagate assimilation and "truth" models for two weeks with one hour time step
- Observation concept:
 - Observe sparse set of 100 grid vertices at every assimilation step
 - Selection of the vertices observed at every assimilation step remains unchanged

Experimental Design: model error

- Main diagonal hill corresponds to in-layer correlations between the vertices.
- Off diagonal hills correspond to cross-layer correlations
- Small hills near the corners reveal model's periodical nature

Assimilation results

Parallelization concerns with VKF

Parallelization concerns with VKF

- With respect to parallelization, VKF is similar to 4DVAR
- This means it is an inherently serial algorithm
- Both
 - L-BFGS itself,
 - the alternating serial calls to the tangent linear and adjoint models, and
 - the alternation between 3DVAR-like purely spatial observation processing and 4DVAR-like error covariance update process
- are all serial

Parallelization concerns with VKF

- On the other hand, the serial complexity of VKF is almost identical to that of 4DVAR, and it may be even less: it consists of the same operations as 4DVAR, organized in a different manner
- So instead of a variational form of EKF, VKF can also be seen as an efficient way to provide 4DVAR with
 - A dynamic error covariance matrix
 - A way to counter model bias without covariance inflation
- But VKF can be run just like 4DVAR in an Ensemble of Data Assimilations EDA
- This will yield as ensemble from the right posterior distribution

Conclusions

Conclusions

- Assimilation methods should be
 - Accurate
 - Precise
 - Parallelizable
 - Simple
- Stabilized Variational Kalman Filter is
 - Accurate
 - Precise
 - Not very parallelizable but serves well in EDA
 - Simple, if 4DVAR has been in use before

Conclusions

- VKF has been implemented in the Lappeenranta version of ECMWF OOPS, dubbed LOOPS
- Integration with IFS is possible once it is brought into OOPS – see the talk by Yannick and Mike in Session 11 tomorrow [©]

Thank You!