
 ECMWF Workshop 2012

Towards a Scalable Performance-
Portable Software Infrastructure for

the Gungho Dynamical Core

Rupert Ford
[Graham Riley, Stephen Pickles, David Ham]

 ECMWF Workshop 2012

NGWCP

● Next Generation Weather & Climate Prediction
Programme

● http://www.nerc.ac.uk/research/programmes/ngwcp

● Met Office, NERC, STFC
– Goal A : Resolution of small scale weather

systems in the atmosphere and ocean

– Goal B : Use of observations to initialise climate
predictions

http://www.nerc.ac.uk/research/programmes/ngwcp

 ECMWF Workshop 2012

GungHo Project

● New Met Office Dynamical Core
● Timeframe : 2018-2020
● Why : scalability, re-write UM, weaknesses in

New Dynamics
● Non latitude-longitude grid
● Investigate both implicit and explicit solvers
● Investigate advection schemes

 ECMWF Workshop 2012

GungHo Effort

● 5 FTE's from Met Office (Dynamics research
and HPC optimisation)

● 5 FTE's from NERC (Bath, Exeter, Imperial,
Leeds, Manchester, Reading)

● 2 FTE's from STFC

 ECMWF Workshop 2012

Why GungHo?

● Andrew Staniforth : “GungHo grids”
● Globally Uniform Next Generation Highly

Optimised
● “Working together harmoniously”

 ECMWF Workshop 2012

Project Structure

● 5 year project
– Phase 1 : Feb 2011 - Jan 2013

– Phase 2 : Feb 2013 - Jan 2016

● First Phase 5 themes …
– Quasi-Uniform grids
– Advection Schemes

– Time Schemes

– Test cases

– Computational Science Aspects

 ECMWF Workshop 2012

Project Requirements

● NWP and Climate : 100m local, 10km global, to 150km climate
● Single dynamical core on a single grid (simple switches)
● Scalable code
● Conservation of tracers
● Comparable accuracy to current solution
● Regional modelling supported
● Dynamic adaptability not required (but ...)
● Whole atmosphere modelling : 600km height, 400km climate
● Reproducibility for different processor configurations not required

 ECMWF Workshop 2012

End of Phase 1 Goals

● Single model formulation chosen is
prefererable

● Possibly keep more than one for full
implementation if more than one option. Must
be same in a switchable framework

● Perhaps different grids, or explicit vs. implicit
but not different discretisations e.g. TriSK vs.
fe-based

 ECMWF Workshop 2012

Infrastructure

● Data Structures
● Multiple Grids
● Existing tools
● Support for threading (cores, gpu's, hybrid)
● Futureproof for different discretisations?

 ECMWF Workshop 2012

Quasi-uniform Grids

● Cubed sphere, icosohedral-hexagonal, triangular, …
● http://kiwi.atmos.colostate.edu/BUGS/geodesic/text.html
● Regular Grid-specific data structures, or general irregular?
● MacDonald et al., A general method for modeling on irregular

grids International Journal of High Performance Computing
Applications November 2011 25: 392-403

● Regular in the vertical → aleviates cost of indirection

http://kiwi.atmos.colostate.edu/BUGS/geodesic/text.html

 ECMWF Workshop 2012

Same Code, Multiple Grids

● General irregular data structures
● Capture topology
● elements, nodes, edges, faces
● Support multiple grids via configuration
● Write code to support different grids – isolate as a

“weights” issue when mapping from nodes to elements
to edges

● Pre-compute weights (as fixed grid)
● John Thuburn prototype code

 ECMWF Workshop 2012

Existing tools

● Don't re-invent the wheel
● Partitioned grids and halo definitions

– Metis, Scotch, ...

● Support for halos and repartitioning
– Provision in ESMF and MCT for irregular grids

– ESMF have plans to support determining halos for irregular grids

● Regridding
– ESMF some support for regridding with irregular grids (triangles and

quadrilaterals)

● ESMF
– Logging

– calendar and time support

 ECMWF Workshop 2012

ESMF halo support

distgrid = ESMF_DistGridCreate (arbSeqIndexList
= elementIDs, rc=rc)

array = ESMF_ArrayCreate(distgrid, tempPtr,
haloSeqIndexList=haloSeqIndexList, rc=rc)

call ESMF_ArrayHaloStore (array, routehandle =
haloHandle, rc=rc)

call ESMF_ArrayHalo(array, routehandle=
haloHandle, rc=rc)

● Support synchronous or asynchronous

 ECMWF Workshop 2012

Threading

● Layered approach
● Kernel code which knows nothing about

threading (or distributed comms)
● Algorithm/control code which calls kernel

functions in apropriate order
● Threading and Comms layer inbetween the

two

 ECMWF Workshop 2012

Threading

● Layered approach
● Kernel code which knows nothing about

threading (or distributed comms)
● Algorithm/control code which calls kernel

functions in apropriate order
● Threading and Comms layer inbetween the

two

 ECMWF Workshop 2012

Kernel Code : from faces to vertices

SUBROUTINE operR(f1,f2,igrid,nf,nv,nz)

DO if1 = 1, nface(igrid)

 ne1 = neoff(if1,igrid)

 ! Share out this face's contributions to its surrounding vertices

 DO ix1 = 1, ne1

 iv1 = voff(if1,ix1,igrid)

 DO k = 1, nz

 f2(nz,iv1) = f2(nz,iv1) + f1(nz,if1)*rcoeff(if1,ix1,igrid)

 ENDDO

 ENDDO

ENDDO

 ECMWF Workshop 2012

Algorithm/Control level

CALL HodgeI(f,temp1,igrid,nf)

CALL Ddual1(temp1,temp2,igrid,nf,ne)

CALL HodgeH(temp2,temp3,igrid,ne)

temp2 = temp3*nusq(:,igrid)

CALL Dprimal2(temp2,hf,igrid,ne,nf)

hf = hf - f

 ECMWF Workshop 2012

Threading and Comms Level

Subroutine operR()

 Call haloUpdateComplete(...)

 ! OpenMP and/or OpenAcc

 Do i=1,nThreads

 Call operR(....)

 End do

 Call haloUpdateStart(...)

End Subroutine operR

 ECMWF Workshop 2012

Support Different Discretisations?

● Support multiple cores
– Re-use / future proof
– Include other cores

● Radical approach (Imperial)
– Topological mapping of variables is configurable
– Kernel specifies data requirements in a fetch/execute model
– Kernel specifies computation at a single grid point (could also do a column)
– Generate threading/MPI etc code

● MPAS/WRF approach
– Code specifies its data structures in a registry file
– Registry file used to populate generic infrastructure with core specific data structures

● What execution model do scientists prefer?

 ECMWF Workshop 2012

Summary

● GungHo Phase1 nearly complete
● Support multiple grids and perhaps implicit

and explicit timestepping switches
● ESMF under serious consideration
● Possible layered architecture for threading
● Support one discretisation but should

infrastructure allow this to change?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

