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Forecast strategies in presence of systematic model errors

Abstract

This study discusses and compares three different strategies used to deal with model error in seasonal
and decadal forecasts. The strategies discussed are the so-called full initialisation, anomaly initial-
isation and flux correction. In the full initialisation the coupled model is initialised to a state close
to the real-world attractor and after initialisation the model drifts towards its own attractor, giving
rise to model bias. The anomaly initialisation aims to initialise the model close to its own attractor,
by initialising only the anomalies. The flux correction strategy aims to keep the model trajectory
close to the real-world attractor by adding empirical corrections. These three strategies have been
implemented in the ECMWF coupled model, and are evaluated atseasonal and decadal time scales.
The practical implications of the different strategies arealso discussed.

Results show that full initialisation results in a clear model drift towards a colder climate. The
anomaly initialisation is able to reduce the drift, by initialising around the model mean state. How-
ever, the erroneous model mean state results in degraded seasonal forecast skill. The best results
on the seasonal time scale are obtained using momentum-flux correction, mainly because it avoids
the positive feedback responsible for a strong cold bias in the tropical Pacific. It is likely that these
results are model dependent: the coupled model used here shows a strong cold bias in the Central
Pacific, resulting from a positive coupled feedback betweenwinds and SST. At decadal time scales
it is difficult to decide whether any of the strategies is superior to the others.

1 Introduction

Systematic model error is a difficult problem for seasonal forecasting and climate predictions. Systematic
model error means that the climatology of the model is different to observed climatology. The term
”climatology” refers to the probability density function of the climate, which it is often characterised
by its mean (the mean of a variable over a long period) and the variability around this mean state.
The climatologies could therefore differ either in the meanand/or the variability. We will use the term
climatology as the subspace of the phase space covered by themodel trajectories over a long period of
time (sometimes referred to as the attractor of the system).In a non-linear system, the different moments
of the probability distribution are linked, and errors in the mean state could affect the variability of the
system.

Systematic model error leads to difficulties in the forecasting process. Particular problems happen when
transferring information between observation space and model space, namely the initialisation and the
issuing of the forecast. At the initialisation stage, information needs to be transferred from observations
to model space. When issuing the forecast, the model output needs to be calibrated using reliable infor-
mation about the real world. In numerical weather prediction (NWP) the forecast covers typically the
range 1-15 days, and, because of the relatively short forecast time, the difference between model and
observed climatologies can be ignored (i.e. the model erroris neglected). At longer lead times (monthly,
seasonal and decadal time scales) the systematic model error can not be ignored. Due to the model
bias, the state of the model will drift away from the real-world attractor towards its own attractor. In
these cases a strategy for accounting for the model bias is needed. In this study we present and compare
different forecast strategies to cope with model bias.

Figure1 illustrates the concepts behind the forecast strategies. In full initialisation (red), the model is
initialised from an analysis that is close to the actual state, and can be assumed to be on the ”real-world
attractor”. After initialisation, the state of the model drifts towards the model attractor. Therefore, before
issuing the forecast, the model output needs to be calibrated. In monthly and seasonal forecasting, the
commonly used calibration is a simple a-posteriori bias correction [e.i, correction of the mean only,
assuming no interaction between mean state and variability, (Stockdale, 1997)]. The bias is corrected by
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Figure 1: Conceptual model of the forecast strategies.

applying a lead-time dependent bias correction in post-processing. For this correction a large data set of
hindcasts (retro-perspective forecasts) is needed.

For anomaly initialisation (purple), the aim is to initialise the model on its own attractor by adding
the observed anomalies relative to observed climate (estimated from a set of re-analyses) to the model
climatology (estimated by long forecasts). Then by construction, the model drift should be avoided. This
strategy is popular to initialise decadal predictions [Smith et al.(2007) among others].

The third alternative to be discussed here is flux correction(blue). The aim of the strategy is to avoid
(or limit) the model drift by adding a correction term to the model during the simulation that pushes
the model solution towards the climatology of the nature. Although flux correction was widely used
in early work with coupled GCMs, it has largely been considered “taboo” by the scientific community
since the paper byNeelin and Dijkstra(1995), where they argue that flux corrections could lead to non-
natural variablity patterns by disturbing the feedbacks operating in a free dynamical system. Indeed, flux
correction should be avoided if the aim is the study of coupled feedbacks, and can be misleading for
model development. In this report we will discuss the results from a forecasting perspective, e.i. whether
flux correction can deliver an improved forecast, which is a pragmatic point of view.

In this comparative study we discuss the practical difficulties and advantages of the different forecast
strategies, with special focus on seasonal and decadal forecasts. These three methodologies are applied
to the ECMWF coupled model. In a companion report (Magnusson et al., 2011), the ENSO variability
and its dependence on the model state is discussed, which have implications for the choice of forecast
strategy.

The paper is organised as follows. The model system and experiment setup is described in Section2 and
an overview of systematic errors in the model given in Section 3. The three different forecast strategies
are discussed in Section4, and the methodology followed in this study is also presented. The results
from the different strategies regarding model drift are given in Section5 and in terms of quality scores
in Section6. Finally the findings are discussed in Section7.
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2 Model setup and experiments

The model used for this study is the ECMWF IFS model (model version 36r1) coupled with the NEMO
ocean model version 3.0 (Madec, 2008). The atmospheric resolution is T159 (corresponds to an hor-
izontal resolution of 150 km) and 91 vertical levels. The ocean uses the ORCA1 grid, a tripolar grid
with a horizontal resolution of about 1 degree at mid latitudes, with a finer meridional resolution (about
0.3 degrees) at the equator. There is no prognostic sea-ice model, instead the sea-ice concentration is
prescribed from observed sequences, randomly selected from any of the 5 years previous to the forecast
starting date [for details seeMolteni et al.(2011)]. The model runs include increased green-house gases
following observed values. Tropospheric and stratospheric aerosols are included in the model only as
fixed climatologies, so no account is taken of volcano eruptions and changes in anthropogenic ”pollu-
tion”. The model has not been specifically tuned to perform (near-term) climate simulations, as the case
for EC-EARTH (Hazeleger and Coauthors, 2010), which uses a similar model system.

The initial conditions for the atmosphere are provided by the ERA-40 reanalysis (Uppala et al., 2005)
for starting dates prior to 1989, after which the ERA Interimreanalysis (Dee et al., 2011) is used. The
ocean initial conditions are from a reanalysis based on NEMOVAR (Balmaseda et al., 2010b) oceanic
reanalysis, which consists on 5 ensemble members. The oceanreanalysis uses fluxes from the ERA-
reanalyses as well as sub-surface observations. The forecast ensemble is constructed by using the 5
NEMOVAR ocean initial conditions, and by applying stochastic physics (SPPT scheme) to simulate
model uncertainties in the atmosphere (Palmer et al., 2009).

Name Fc months Members Initialisation Flux correction Initial dates

Control 300 3 Full None 3
StrongRelax 300 3 Full None 3
WeakRelax 300 3 Full Momentum 3

FullIni 120 7 Full None 10
AnoIni 120 7 Anomaly None 10
Ucorr 120 3 Full Momentum 10

UHcorr 120 7 Full Heat and Momentum 10

FullIni 14 10 Full None 30
AnoIni 14 10 Anomaly None 30
Ucorr 14 10 Full Momentum 30

UHcorr 14 10 Full Heat and Momentum 30

Table 1: Experiments

Table1 shows the list of experiments that have been undertaken. To obtain an estimate of the model
climate, 3-member ensembles initialised 1965, 1975 and 1985 have been run for 25 years (referred as
Control in what follows). These simulations are used to calculate the model climate for the anomaly
initialisation (see below) as well as for diagnostics. An additional set of 25-year forecasts was conducted
where the SST were strongly constrained to observations. The resulting atmospheric fields are equivalent
to those obtained by AMIP run (atmospheric only simulation forced by observed SST). This methodology
has been used to initialise coupled models (Keenlyside et al., 2008), but here it will be used for the
calculation of the momentum-flux correction. The SST data used for the relaxation is the same as for
ERA-40 up to 1981 and after that Reynolds version 2 (Reynolds et al., 2002).

In order to evaluate the forecast strategies, one set of experiments has been run on a decadal time scale
while another set is run on an annual time-scale with an increased number of start dates and ensemble

Technical Memorandum No. 676 3



Forecast strategies in presence of systematic model errors

90 180 270 360

-60

-30

0

30

60

-10 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 10 ∞

Figure 2: Bias in sea-surface temperature for the long control simulation, forecast year 14-24.

members in order to get more reliable forecast statistics.

3 Systematic model errors

In this section we will discuss a selection of systematic errors in the model, which are of importance for
the choice of forecast strategy. Figure2 shows the sea-surface temperature bias for the Control forecast
averaged for forecast year 14-24, where we have discarded the first 13 years in order to let the model
drift to its climate. The modelled SSTs are in general too cold compared to the reanalysis. Exceptions
from the cold bias occur in the southern ocean and in the vicinities of the western boundary currents and
around the southern tip of Greenland. The coldest bias is found in the mid of the northern Atlantic with
a bias of more than 6 Kelvin. This bias is believed to be due to the wrongly separation of the Gulf stream
caused by low model resolution.

In the tropical Pacific the cold bias is pronounced with a too intense cold tongue. This systematic error
is of importance for this study due to its connection to the ENSO. Figure3, shows the vertical cross-
sections of temperature along the Equatorial Pacific for thereanalysis (top), the coupled model (middle)
and their difference (bottom). Both the reanalysis and the model show the sloping thermocline, with the
warm pool in the western part. The model has a cold bias at the surface and warm bias at depth, extending
all across the Equatorial Pacific at the depth of the thermocline. The pattern of the errors (cold surface
and warm subsurface) is indicative of too diffused thermocline. The warm bias is stronger in the western
Pacific, as if the thermocline in the coupled model is not onlymore diffused, but also has a strong zonal
gradient. This error in the slope of the thermocline is the footprint of too strong zonal winds.

Figure4(a) shows the bias in the zonal component of the 10-metre windspeed for the coupled model.
Generally, the bias is less than 1 m/s, with a few exceptions.The largest bias appears in the western
tropical Pacific, with a bias up to 3 m/s. The bias is of the sameorder of magnitude as the wind speed in
the atmospheric reanalysis, meaning that the wind speed in the model is about twice that in the reanalysis.
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Figure 3: Temperature cross-section along the equator in the tropics. Forecast year 14-24 from Control experiment.
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Figure 4: Bias in zonal 10-metre wind. Forecast year 14-24.

Figure4(b) shows the wind bias in the StrongRelax experiment, whichis reduced respect to the free
coupled model. This result clearly shows that if the SST biasis avoided the wind bias in the tropical
Pacific is reduced. The impact of the SST bias is especially strong in the western part of the basin
where the wind bias is reduced by 50% in the StrongRelax experiment compared with the Control. Note,
though, that substantial wind biases are present even in theabsence of SST bias.

The diagnostics of the structure of the temperature bias in the tropical Pacific together with the wind bias
suggest that at least a part of the cold bias in the region results from a positive coupled feedback between
winds and SST: too strong winds lead to an excess of upwelling, producing colder SST, which in turn
produces stronger zonal winds. Disrupting this positive feedback is an important motivation for using
momentum-flux correction in this study (see below).

W/m2 Control StrongRelax ERA Interim FromTrenberth et al.(2009) )

Net Solar TOA 240.1 238.5 243.7 239.4
LW TOA -239.2 -241.8 -245.6 -238.5
Sum TOA 0.9 -3.2 -1.6 0.9

Net Solar SFC 165.3 162.2 163.9 161.2
LW SFC -64.2 -60.9 -56.3 -63.0

Sensible HF -19.9 -19.8 -17.5 -17.0
Latent HF -80.3 -84.6 -82.6 -80.0
Sum SFC 0.9 -3.2 7.5 0.9

Table 2: Global energy budget

As mentioned earlier, the StrongRelax experiment is similar to an AMIP run. The two parallel exper-
iments Control and StrongRelax offer the opportunity to compare the global energy balance in a free
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coupled model and in an AMIP run. The energy balance can offersome insight on other coupled feed-
backs. The globally-averaged top of the atmosphere (TOA) and surface (SFC) energy fluxes have been
investigated, both for the Control simulations and the StrongRelax experiment. In Table2 the different
components of the energy budget for forecast year 14-24 are presented together with the values form
ERA Interim covering the same period and the values fromTrenberth et al.(2009). For this period, the
Control simulation has approximately reached its climatology and we see that the net budget both at
TOA and the surface agrees withTrenberth et al.(2009); the net uptake of energy by the system is 0.9
W/m2. In the StrongRelax experiment, there is loss of energy at the top of 3.2 W/m2. In order to keep
the sea-surface temperature close to the observed this amount of energy is put into the system by the SST
relaxation. This result shows that the atmosphere is not in balance but losing energy if the mean state is
close to the observed, what in a free coupled model will lead to a drift towards a colder atmosphere.

Comparing the components at the top of the atmosphere, the long-wave radiation is naturally larger for
the StrongRelax experiment compared to the Control. However, a difference in the net solar radiation
is also present, because of less clouds in the Control. This acts as a negative feedback in the system:
a colder model state leads to higher net solar radiation. ForERA Interim the loss of energy from the
atmosphere at the top of the atmosphere is about 1.6 W/m2 and at the surface the atmosphere loses about
7.5 W/m2. The energy budget in ERA Interim is extensively discussed in Berrisford et al.(2011).

4 Methods

4.1 Full initialisation

In numerical weather prediction, the normal procedure is toinitialise the model from an analysis per-
formed via data assimilation. The analysis is a combinationof the latest observations together with a
short-range forecast. By continuously using the information from the observations the analysis state
is kept close to the real-world attractor (although in poorly observed areas, a difference could still be
present). During the model integration, the state of the model will diverge from the true state both due
to the loss of predictability and the development of systematic errors. In NWP the systematic error is
assumed small compared to the random error (which leads to the loss of predictability) and often the
model output is not calibrated. At longer lead times (monthly, seasonal and decadal time scales), the
model will drift away from the real-world attractor towardsits own attractor. The model bias is often
large compared with the random component of the forecast error. In these cases the model bias cannot
be neglected and the strategy for accounting for the model systematic error is the a-posteriori removal of
it.

The bias is corrected by applying a lead-time dependent biascorrection in post-processing. The bias
correction is also made dependent of the seasonal cycle. This is the strategy commonly used in monthly
and seasonal forecasts (Stockdale, 1997). For example, in an operational seasonal forecast issued every
month with a typical leadtime of 7 months, the estimation of 7x12=84 bias correction terms is needed to
account for all lead times and all starting dates. The robustestimation of the this large number of bias
fields requires a large data set of hindcasts (retro-perspective forecasts). This strategy will fail if the bias
is non stationary, and can lead to sub-optimal forecast skill. The non-stationarity of the bias may be due
to non-stationary errors on the initial conditions (Kumar et al., 2012), or to flow-dependent bias arising
from the non-linear nature of the system (Balmaseda et al., 2009). Generally speaking, if the systematic
error bias is large enough, the non-linear terms will becomenon-negligible and therefore a mere linear
calibration process will be insufficient.
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The full initialisation strategy may also give rise to so-called initialisation shock, a term referring to
the rapid adjustment processes in the initial phases of the forecast, that can produce non-monotonic
behaviour in the model drift. The consequence of the initialisation shock is that at short lead times the
error can be larger than at longer lead times. The cause of theinitialisation shock is an imbalance between
the initial conditions and the dynamics of the model.

In this report the experimentation using full initialisation but without any flux correction will be referred
to as FullIni.

4.2 Anomaly initialisation

Due to the difference in mean climate of the analyses and the model, a forecast initialised from an
analysis will drift torwards the model climate. The drift towards the model attractor could have non-
linear effects, harming the forecast, and can also result inan initialisation shock or over-shooting of a
model drift further away than the model climate, before stabilising at the model climate. The idea of
using anomaly initialisation is to avoid the model drift andinitialisation shock (but not the model error).
The procedure of using anomaly initialisation is to calculate anomalies in the analysis with respect to the
analysis’ climatology and add such anomalies to the climateof the model. The method has previously
been used in several studies e.g.Schneider et al.(1999), Pierce et al.(2004) and Smith et al.(2007).
The rationale is to avoid an initialisation shock due to an initial state being far from the model attractor.
Strategies for initialising imperfect models are also discussed inToth and Pena(2007) in a simple model
framework.

It is often emphasised that the advantage of the anomaly initialisation is the avoidance of initialisation
shock. This is by no means guaranteed, since the structure ofthe observed anomaly may not be con-
sistent with the model mean state. For instance, the largestanomalies in the observations are associated
with displacement of sharp fronts or gradients. If, for example, the systematic error of the model is
highly correlated with the misplacement of this fronts/gradients, simply adding an anomaly where it is
not supposed to be found is not the same that initialising themodel around its attractor. A sharp incon-
sistency is found also when the placement of the anomalies isassociated with vertical displacements of
the Equatorial thermocline. Another clear example is the application of an observed sea-ice anomaly in
regions where the model never has sea-ice.

A more interesting advantage of the anomaly initialisation, which is often not discussed, is the avoidance
of model drift. By avoiding model drift, the a-posteriori correction of the forecast does not require the
bias dependence on the forecast lead time (so typically onlythe 12-month climatology of the bias is
required), and the bias estimators can be more robust. This is more relevant for decadal forecast ranges,
when it is also more expensive to conduct the calibrating hindcasts. The procedure requires however a
long integration to estimate the model climatology.

The procedure of the anomaly initialisation is not without problems. First of all, if the non-linearities
are strong, the calibration of the forecasts will face the same problems as the full initialisation, or even
stronger, since the mean error is fully developed during thecoupled model integrations. It is not guar-
anteed that the initialisation shock is removed, since it depends how the anomaly is assimilated into the
model (as discussed above). The other drawback is that the estimation of the anomaly requires the knowl-
edge of the observed climatology. This introduces two kind of difficulties. On one hand, it is important
that the sampling period used for the observed climatology is consistent with that used for the model
climatology (for instance, a model climatology estimated for the pre-industrial era should not be used
for the anomaly initialisation of decadal forecast post 1960’s, with an observed climatology estimated
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during the period 1970-2005). The other kind of problem is related with defining the climatology of new
or sporadic observations. For instance, some regions like southern oceans had not been observed prior
to advent of Argo. Most of the deep ocean has only been observed sporadically with cruise data, and
there is not enough information to extract a long term climatology. To avoid this problem, the anomaly
initialisation strategy of the ocean often uses gridded fields from existing ocean reanalysis. In this way,
it turns an initial weakness into a good advantage, since it means that different coupled modelling groups
can initialise their decadal forecasts with external oceanreanalysis, without the need of having to develop
data assimilation systems for their own models.

In our experiments, the anomalies are added to the full modelstate vector instantaneously at initial time,
instead of assimilating only temperature and salinity anomalies with a certain time scale, usually by
means of relaxation techniques, as in e.g.Pohlmann et al.(2009). One potential problem with using
the instantaneous full state vector is that the new state could also be off the model attractor, creating
instabilities in the adjustment process that may lead to thequick disappearance of the anomalies. But
none of the results from these experiments suggest that thismight be the case.

In order to calculate the model climate for the anomaly initialisation procedure, the 25-years Control
experiment has been used. The first 10 years of the simulations have been discarded in order to let
the model drift to its own climatology. This may still be a short period for the drift in the deep ocean
to be fully developed, but it is sufficient for obtaining a stable state in the upper ocean, which is the
prime objective of this study. An observed ocean climatology has been calculated from ocean reanalysis,
spanning the same time period used in the estimation of the model climate. Using the same period yields
data sets with the same impact of greenhouse gases. The modeland analysis climate is calculated for the
actual day of the year used for the initialisation (November1st in our case).

The forecasts using anomaly initialisation will be referred as AnoIni.

4.3 Flux correction

It is clear from a variety of studies that strong non-linear interactions between mean state and anomaly are
at play in the coupled model forecasts. For instance,Balmaseda et al.(2010a) show that the atmospheric
response to a given sea-ice anomaly depends on the atmospheric mean state, which in turn is conditioned
by the underlying SST. In their study they show that correcting the SST in the North-Atlantic, where
the model has errors due to the wrong position of the Gulf Stream, has large impact on the atmospheric
mean state and in the atmospheric response to the arctic sea-ice anomaly. Results along these lines are
documented byScaife et al.(2011) andKeeley et al.(2012).

Model improvement is the ultimate way of reducing model biases. However this is a slow process,
especially if the systematic errors related to model resolution (as in the case of the correct Gulf Stream).
A temporary solution, until the problems in the model is detected and solved, is to compensate for the
systematic errors by applying empirical corrections.

One specific correction is the so-called flux correction, applied only in the coupling between the atmo-
sphere and the ocean. The aim of the strategy is to avoid (or limit) the model drift by adding a correction
term to the model during the simulation that pushes the modelsolution towards the observed climatol-
ogy. The aim is to keep the forecast errors as linear as possible, to be able to apply simple calibration
techniques. In this strategy the empirical correction of the forecast is done during the model integra-
tion rather than only in the final calibration phase. Ideal candidates for this strategy are those situations
where the model exhibits a very clear mean error, difficult tocorrect by improving the model equations
but relatively easily by applying empirical correction. Inthese cases flux correction may be a successful
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Figure 5: Examples of flux corrections. The units are N/m2 (top panels) and W/m2 (bottom panels).

forecast strategy. The use of flux correction has recently been discussed inSpencer et al.(2007) and
Manganello and Huang(2009).

In this study we will investigate two options, namely of using only momentum-flux correction (Ucorr)
and a combination of momentum and heat-flux correction (UHcorr). The momentum-flux correction has
been calculated by using the StrongRelax experiment in order to get a simulation with a SST as close as
possible to the observed one and calculate the wind bias under the condition of unbiased SST [see Figure
4(b)]. The momentum-flux correction has been estimated from two 25-years simulations starting 1965
and 1975 (3-member ensembles), by comparing the forecast with reanalysis data. The first 5 years of
each simulation have not been used in order to let the atmospheric model drift (the drift in the uncoupled
system is believed to be shorter than in the coupled system).In the experiments presented here, the
flux correction is applied on the fields passed from the atmospheric model to the ocean model. In order
to represent the seasonal cycle of the systematic errors, correction fields have been estimated for each
calendar month. The monthly flux correction climatology is then linearly interpolated in time before
applying to the coupling interface for a given day.

In order to calculate the required heat-flux correction in presence of the momentum-flux correction, a
similar set of forecasts has been run using momentum-flux correction and a weak SST-relaxation. Using
this strategy yields a heat-flux correction suitable together with momentum-flux correction, which partly
accounts for the feedback effects between the ocean and the atmosphere. The SST relaxation uses the
ERA-40 SST before 1981 and daily values derived from Reynolds OIv2 thereafter.

As examples of the applied flux corrections, Figure5 shows the correction for zonal wind stress compo-
nent (upper panels) and the heat flux (lower panels). The corrections applied have a seasonal variability
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and here the January and September values are plotted. Comparing the momentum-flux corrections (up-
per panels) for January and September we see a strong seasonality, especially in the tropical Pacific
where the required correction is strongest in September in order to decrease the too strong easterlies in
the model climate. We also see that the corrections are strongest in the winter hemispheres.

The lower panels in Figure5 shows the heat-flux correction required with the momentum-flux correction
applied, for January [Figure5(c)] and September [Figure5(d)]. Positive correction means that heat is
added to the ocean and the global annual mean is 3.9W/m2. Regionally, positive corrections are needed
for the winter hemispheres in the subtropics. Large heat-flux corrections are also needed in vicinity of
the western boundary currents in both the Atlantic and the Pacific. In the southern oceans a negative
flux correction is needed due to the warm bias in the model. Regarding the tropical Pacific, the heat-flux
correction is weak in January, while there is a strong positive correction during September, especially in
the eastern part. In the very eastern part the correction is negative.

5 Model drift

In Section3 the model climate and its systematic errors were introduced. In this section we will discuss
the evolution of the systematic errors as a function of forecast lead-time, usually referred to as the model
drift. We will discuss the global temperature drift as well as focusing on the drift in the tropical Pacific.

5.1 Global

Figure6(a) shows the evolution of the global mean sea-surface temperature (SST) for the reanalysis and
forecast data from 4 initial dates, using a 12-months running mean filter. For the reanalysis SSTs, a
warming trend of about 0.5 Kelvin during the 40 year period isapparent. The trend is modulated by
interannual variability, dominated by the ENSO events (theEl Niño event in 1997 caused the highest
global SSTs in the time-series). In Figure6(b) the bias averaged over all initial dates is plotted, in order
to visualise the mean model drift.

For the FullIni experiment (red), the SSTs drifts towards colder values as expected from the results in
Section3. The drift has different time-scales; most of the drift appears during the first two years with
a slower drift acting on the decadal time scale. For the AnoIni experiment (pink), a substantial part of
the model drift is avoided by initialising the model close toits attractor, which is the primarily aim of of
the strategy. The AnoIni experiment has a slightly colder mean state than the FullIni even after 8 years,
which is a sign of drift acting on long time-scales.

The results for the Ucorr (green) experiment indicate a delayed drift compared to FullIni, which can be
related to the tropical Pacific (see below). For the longest forecast range, the SST bias is comparable
to FullIni. The UHcorr experiment shows a much improved model climate, which is an expected result
from using heat-flux correction. The small difference between the reanalysis and the UHcorr experiment
is believed to be due to the differences in the SST data set used to calculate the flux correction and the
SST in the reanalysis, but it can also be an artifact of sampling errors and non stationarity of the record.

In Figure6(c), the ensemble mean of bias-corrected forecasts is plotted, using a lead-time dependent
correction similar to the bias in Figure6(b). After applying the bias correction, it is difficult fromthis
figure to determine whether any forecast method is better or not. The forecast quality will be discussed
in Section6.
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Figure 6: Time-series of the global mean sea-surface temperature and its systematic error. FullIni (red), Ucorr
(green) , UHcorr (blue) and AnoIni (pink). 12-month runningmean applied for the forecasts.
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Figure 7: Vertical cross-section of the development of the global temperature bias.

In order to further exploit the 3-dimensional development of the temperature bias in the ocean, vertical
cross-sections of the global bias development are plotted in Figure7 as a function of lead time and depth
of the ocean. The development of the integrated heat contentin the upper 700 metres is plotted in8(a)
for 7 forecasts and the development of the bias in Figure8(b). In Figure9 the bias at 373 metres depth
(model level 21) for forecast year 4-9 is plotted in order to investigate the geographical differences in the
bias.

Studying the results for FullIni [Figure7(a)] and AnoIni [Figure7(b)], the general features are a cold bias
in the upper-ocean and a warm bias at depth. For the FullIni experiment, the cold bias appears on a much
faster time scale than the warm bias deeper levels. The fast development of the surface bias is believed
to be related to the initial unbalance at the top of the atmosphere as discussed in Section3 together with
a fast development of the enhanced cold tongue in the Tropical Pacific. The slow component of the drift
could be due to a too strong vertical mixing in the ocean. The location for the warm bias is generally
in the extra-tropics. Because of the different time-scalesof the cold and the warm bias, the integrated
heat-content decreases during the first years of integration for FullIni, while the bias for AnoIni is much
more stable.

For the AnoIni experiment we see that the bias structure is correctly initialised but we see that the warm
bias continues to develop. One explanation to this could be that we have used a too short period for
calculating the model climate (the drift in the deep ocean continues after 25 years). There is another
explanation, related to the non-stationarity of the time series during the period considered: it may be
possible that the global warming yields a too strong uptake of heat in the ocean, which agrees with the
surface energy budget result discussed in Section3. An evidence for that is the weak warming trend
in the SST while the 700-metre heat content shows a stronger trend comparing with the reanalysis in
the of the decadal simulations for the anomaly initialisation experiment (Figure8(a), red curve), while
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the FullIni still after 10 years of integration only shows a weak trend also in the 700-metre heat content
measure. For the AnoIni experiment the biases cancel each other and the heat content of the upper 700
metres for the AnoIni experiment is similar to the heat content in the reanalysis.

For the Ucorr experiment, the cold bias at the surface is similar in magnitude as the for FullIni, while the
warm bias below seems somewhat weaker. This makes the integrated heat content even colder than for
the FullIni experiment, which has a stronger compensation of errors. Comparing FullIni and Ucorr, the
impact of the momentum-flux correction is mainly in the Pacific. By changing the speed of the gyre, the
Ucorr experiment has reduced biases at this depth, especially around the western boundary current in the
northern Pacific.

The UHcorr experiment shows a reduced bias at the surface as expected from the flux correction design.
However, the UHcorr experiment also shows a weaker warm biasat depth compared to FullIni, for which
one may have expected the opposite; the compensation of the cold bias at surface should have led to an
even warmer bias at depth. Therefore this result seems to be due to a non-linear effect caused either
by stratification effects or perhaps by circulation changes. As well as for Ucorr, a clear improvement is
present in the western extra-tropical Pacific, especially east of Japan. Another general feature in the bias
for all experiments is the cold bias along the Gulf stream anda dipole structure in the bias in the northern
Atlantic.

Figure8(c) shows the forecast time-series of the 700-metres heat content for the ensemble mean with a
bias correction applied. Studying the bias-corrected forecasts (Figure8(c)), the general feature is a faster
warming in the latter part of the time-series than in the early part. However, all forecasts miss the cooling
of the oceans in 1992 and the fast warming started in year 2000.

5.2 Tropical Pacific

The systematic model errors in the Tropical Pacific and its the effect on the variability was extensively
discussed inMagnusson et al.(2011). The main finding was that the ENSO variability is clearly sup-
pressed by the systematic errors in the model and by using fluxcorrection the variability was increased.
In order to evaluate ENSO forecasts, the average SST for different areas are commonly used. In this
study we will refer to Niño3 (150◦W-90◦W,5◦N-5◦S) in the eastern part of tropical Pacific; Niño3.4
(170◦W-120◦W,5◦N-5◦S) in the central part and Niño4 (160◦E-150◦W,5◦N-5◦S) in the central-western
part of the basin.

Figure10(a) and10(b) shows the SST model drift as a function of lead time in the Niño3 and Niño4
area respectively, calculated from the 14-months simulations. For these figures, it is clear that AnoIni
experiment is initialised on the biased state (by design), while the other experiments are initialised on
the observed (analysed) state. Studying the FullIni experiment, the drift starts immediately and a major
part of the drift takes place in the first 6 months. For Niño3,one outstanding feature is that the FullIni
experiment drifts even colder than for the AnoIni experiment, which is a sign of ”over-shooting” (the
systematic error is larger than the error of the model climate during a transient period). However, for
the Niño4 area where is no clear sign of over-shooting. In order to explain the over-shooting, we can go
back to the vertical cross-section of the temperature bias graphed in Figure3 and compare it with the
cross-section for FullIni and forecast month 6-18 plotted in Figure11. Comparing the two cross-sections,
we see that the bias in the eastern part of the basin is more severe between month 6-18 than the fully
developed bias. In the beginning of the forecast, the upwelling water is relatively colder than later on
in the forecast when the bias is developed. The AnoIni experiment is initialised with a warm bias in the
thermocline, and therefore is the upwelling water in the eastern part of the basin relatively warmer in the
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Figure 8: Time-series of the global mean ocean heat content in the upper 700 metres and its systematic error.
FullIni (red), Ucorr (green) , UHcorr (blue) and AnoIni (pink). 12-month running mean applied for the forecasts.
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Figure 9: Temperature bias at 373 metres depth for forecast year 4-9.
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Figure 10: Model drift in SST in the tropical Pacific. FullIni(red), Ucorr (green) , UHcorr (blue) and AnoIni
(pink).
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Figure 11: Vertical cross-section along the equator in the Pacific for FullIni, forecast month 6-18.

AnoIni experiment compared to the FullIni during the early part of the forecasts.

For the Ucorr experiment, the bias during the first year is clearly reduced, compared to FullIni. The
reduction is clearest in the eastern part where the applied momentum-flux correction is due to the change
in the amount of upwelling cold water. In the western part, the additional heat-flux correction plays a
role as Ucorr develops a stronger bias than UHcorr.

In order to evaluate the model drift on a longer time scales, the model bias as a function of lead time has
been calculated from the decadal simulations. Figure10(c) and Figure10(d) shows the model drift for
the first 5 years of these simulations for Niño3 and Niño4 respectively. Comparing with the 14-month
simulations, the data from the decadal simulations is much noisier, due to a reduced number of initial
dates and ensemble members. However, the same features stands out as in the 14-month data sets. The
overshooting for FullIni for Niño3 is also present here andremains into the second year. However, for
longer forecast ranges (year 2 and onwards), the sub-surface bias structure has developed in the FullIni
experiment and the period of over-shooting is over. After that the AnoIni is somewhat colder than FullIni
due to the generally colder ocean as seen in Figure6(b).

For Ucorr and UHcorr the positive bias after one year is much more pronounced in the decadal simu-
lations. For the UHcorr experiment the bias is about 2 Kelvin. For the following year a corresponding
cold bias is present. One could speculate that it could be a sign that the flux correction is over-doing the
correction for the first year or that the flux correction erroneously triggers El Niños too frequently for the
second DJF season and La Nĩnas the year after. For longer lead times the mean state for Ucorr is colder
than UHcorr but still not as biased as FullIni.

6 Forecast quality

In this section, the forecast quality on seasonal and decadal time-scales will be discussed, starting with the
predictability of ENSO on seasonal time-scales. The predictability of ENSO is key for the predictability
of other regions due to ENSO’s strong teleconnections. For all scores presented here the bias has been
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Figure 12: Anomaly correction coefficient for SST forecastsin El Niño areas. FullIni (red), Ucorr (green), UHcorr
(blue), AnoIni (pink) and persistence (black).

removed by applying a lead-time dependent bias. For the decadal scale, results from Ucorr will not be
discussed. In the evaluation of the decadal experiments, the data has been detrended hence the main
interest in this study is the effect of the forecast strategyand not the response of increased greenhouse
gases.

Figure12(a), Figure12(b) and12(c) shows the anomaly correlation coefficient (ACC) for the Niño3,
Niño3.4 and Niño4 respectively. For Niño4, Ucorr shows the best scores while AnoIni clearly shows
the worst results; even worse than the persistence. This is an example of forecast improvement obtained
by correcting the mean state and disrupting the developmentof positive feedbacks between cold tongue
and trade winds, which are strongest in this area (Niño4 is the Central-Western Pacific), For Niño3
(in the Eastern part of the Pacific basin) the flux-corrected experiments show most noticeable advantage
compared to the other forecast strategies in the forecast range 3-5 months. The score for FullIni is slightly
better than AnoIni. This is a region affected by remote forcing via propagation of Kelvin waves generated
in the Western Pacific. So the improvement seen here is likelya combination of local improvements
(better thermocline depth) as well as a response to remote improvements in the Western Part of the basin.
The Niño3.4 region is located in the mid of the basin is a combination of a part of Niño3 and Niño4.
Therefore it is not a surprise that this area share some features with the other areas. In this area AnoIni
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Figure 13: Amplitude ratio for SST anomalies compared with observed anomalies in Niño3 area. FullIni -red,
AnoIni - pink, Ucorr - green and UHcorr -blue. Persisted forecast in black, dashed.

is worst but is still better than the persistence.

Figure13 shows the amplitude ratio of anomalies compared to the observed amplitude. The outstanding
feature here is the period of high amplitudes in the FullIni experiment, which peaks roughly at the same
time as the main drift towards cold bias (month 5 of the forecasts). The coupled model fails to capture
the seasonal relaxation of the trade winds, which in nature happens during late spring / early summer.
During this time of the year, the amplitude of the observed SST anomalies in the Eastern Pacific is at is
lowest, since the SST variability is somehow decoupled fromthe thermocline variability. Any anomaly
in the initial conditions remains in the thermocline, but itdoes not translate into an SST anomaly. This is
also the reason for the seasonal predictability barrier. Inthe model however, the trade winds fail to relax,
and the thermocline-SST feedback continues to be active during the spring-summer season, giving rise
to an overestimation of the SST anomaly. This problem in the model will be more obvious in situations
when the anomaly in the initial conditions is large. We are ina situation that illustrates the difficulties
of dealing with flow-dependent, seasonal dependent and lead-time dependent bias. The amplitude of the
FullIni SST anomalies decays in at longer forecast ranges, and by month 10 they are weaker than the
observed anomalies. This is likely a consequency of the low wind variability in the coupled model (not
shown) and the SSTs that seem to be locked into a permanent andstable cold phase (Magnusson et al.,
2011), without an ability to generate anomalies not present in the initial conditions.

For AnoIni, which has only a small model drift, the amplituderatio is close to 1. This shows that
the strategy implemented here for anomaly initialisation is able to retain the information for about 6-7
months, after which the amplitude of the anomaly converges to the same values as seen for FullIni, and
probably for the same reasons (too stable cold state, with not enough wind variability). For Ucorr and
UHcorr, an overestimation of the amplitude is present around forecast month 6, but not as strong as in
the FullIni: the seasonal momentum-flux correction will enforce the trade wind relaxation. For UHcorr,
the amplitude ratio increases after one year, since the windvariability is also overestimated (not shown).
This manifests in the overprediction of El Nino events at forecast ranges longer than 1 year.

Figure14 shows the ACC for the precipitation in the Niño3.4 area. Here we see large differences be-
tween forecast strategies. The worst results by far are obtained by the AnoIni experiment, which has
an erroneous means state troughout the simulation. Even if AnoIni produces skillful ENSO forecasts
of SST after bias correction (better than persistence), theprecipitation forecasts are poor, substantially
worse than persistence. The precipitation rate is dependent on the absolute value of the SST and therefore
the precipitation will be negatively affected by the cold SST bias. The best performace is shown by the
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Figure 14: Anomaly correlation coefficient for precipitation in the Nĩno3.4 area. FullIni -red, AnoIni - pink, Ucorr
- green and UHcorr -blue. Persisted forecast in black, dashed.

Ucorr strategy, followed by UHcorr. One possible reason forthis improvement is the better predictions of
SST, but also the improved mean state of the atmosphere, which may respond better to a given anomaly.
The FullIni experiments shows reasonable results for the first months, when the mean state of the SST
still is close to the observed one.

In order to investigate the performace on different time scales, we consider maps for ACC for forecast
month 2-4 (Figure15) and forecast year 2-5 (Figure16). Statistically significant points are marked with
a dot ( different from zero with a 5 % significance level). Additionally, Figure17 shows a summary of
the ACC for different areas for 2-metre temperature, for various lead times and averaging periods. All
diagnostics are based on 7 ensemble members.

For global temperatures [Figure17(a)], skill is present throughout the first year. This is mainly due
to persistence of initialised anomalies and prediction of ENSO, which has an influence on the global
mean temperature. For longer time-scales the effect of increased green-house gases play an important
role (Hawkins and Sutton, 2009), and has been removed by linear detrending in the calculation of these
scores.

The region with the highest predictability for month 2-4 (Figure15) is the tropical Pacific that benefits
from the predictability of ENSO (see above). For the second half of the first year, UHcorr shows the
worst performance for Nino3.4 (Figure17). This could be related to this strategy producing too much
ENSO variability at longer lead times, as indicated by a model drift and a high amplitude ratio (see
above).

The northern Indian ocean also shows high predictability for month 2-4. Here the AnoIni experiment
shows the worst performance while FullIni and UHcorr yield similar results. For the subtropical Atlantic
the three methods look similar. For Europe, some skill is present in FullIni and AnoIni while UHcorr
shows no skill. This is the case also for the second half of thefirst forecast year (Figure17). However,
care should be taken when interpreting the skill scores at mid latitudes. Even where the boot-strapping
test indicates statistical significance, experiments withlarger number of ensemble members demonstrate
that robust estimation of seasonal forecast skill in these areas need large numbers (20 or above) of en-
semble members.

Figure 16 shows the ACC for forecasts of 2-metre temperature on a multiyear time-scale averaged
over the forecast period year 2 to 5. This could be seen as a measure of skill of decadal forecasts,
even if the period is only four years. One area with enhanced predictability on this time scale is the
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Figure 15: ACC for 2-metre temperature, forecast month 2-4,year 1. Black dots for values significantly different
from zero with 95% confidence.
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Figure 16: ACC for 2-metre temperature, forecast month 1-12, year 2-5. Black dots for values significantly different
from zero with 95% confidence.
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North Atlantic, in agreement with other studies [e.g.Pohlmann et al.(2004); Mochizuki et al.(2010);
van Oldenborgh et al.(2012)]. Although the figures show that the UHcorr and FullIni performs some-
what better than AnoIni, it would be dangerous to draw conclusions without a better understanding of the
reasons. One could speculate that this is due to a more realistic strength of the MOC on this time-scale,
but in general the MOC is not well represented in the coupled model, nor in the initial conditions. Some
skill is surprisingly present in the southern Indian Ocean,where other coupled models show little skill
after the linear detrending [e.g.van Oldenborgh et al.(2012)]. In fact, it seems that the positive skill
extends to the south-eastern Pacific and southern Atlantic.These results would suggest that the higher
skill at 2-5 years is not exclusive to the North Atlantic, butmore generally of the mid latitudes. Some
skill for year 2-5 is also present in the Tropical Pacific for all experiments (the highest skill for AnoIni);
the pattern of the positive skill (latitudinally broad horseshoe, with little amplitude in the Eastern Pacific)
is reminiscent for the decadal ENSO signal (Power et al., 1999, 2006).

In the decadal time scale, the UHcorr experiment seems to have higher skill in the Nino3.4 area (year 6-
9) than FullIni and AnoIni. It is difficult to judge whether this signal is robust and a deeper investigation
is needed to find the reason for this increased predictability.

7 Summary and discussion

In the presence of systematic model errors, a forecast strategy needs to be applied to deal with bias.
This study discusses different forecasts strategies, and compares the results when applied to seasonal
and decadal forecasting. The standard forecast strategy for numerical weather prediction, monthly and
seasonal forecasts is full initialisation, where the modelis initialised from a state close to the real-world
attractor. In the presence of systematic model errors, the model, once initialised, will drift towards the
attractor of the model. For short lead times, as for medium-range forecasts, the systematic error is usually
ignored, since it is considered small compared to the error growth of the initial conditions. However, at
longer lead times (monthly and seasonal) this is no longer the case. If the difference between the model
and real-world attractor is large, a different forecast strategy is needed: the direct model output needs to
be calibrated in order to issue the forecasts. Initialisation and calibration can be considered two different
aspects of the forecast strategy. In this study we assume thesimplest calibration strategy (removal of
the mean bias a posteriori) and compare different initialisation strategies, focusing on their effect on the
forecasting quality.

We have compared full initialisation, anomaly initialisation, momentum-flux correction and heat and
momentum-flux correction. While the full initialisation simulations are initialised close to the real-world
attractor, anomaly initialisation aims to initialise the model on its own attractor by attaching observed
anomalies to the model climate. The purpose of this strategyis to avoid the model drift and possible
non-linear effect of the model drift. Another strategy to avoid or reduce model drift is to apply flux
correction in the coupling between the atmosphere and ocean. This will act as an artificial energy and/or
momentum source or sink with a seasonal cycle.

The model system used for this study (ECMWF atmospheric model version 36r1 + NEMO ocean model
version 3.0) shows a general cold bias. The bias is due to imbalance in the energy flux at the top of
the atmosphere. If the model state is kept close to the observed climatology by SST relaxation, a mean
forcing of 3.2 W/m2 is required. A part of the atmospheric temperature bias can also be attributed to a
strong uptake of heat by the ocean. One sign of this is a warm bias in the oceans below 200 metres depth.
The coupled model also has an enhanced cold bias in the tropical Pacific caused by too strong easterlies
yielding a positive feedback to the Walker circulation (Bjerknes, 1969). The cold bias has a strong
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Figure 17: ACC for SST averaged over different periods (fromleft): forecast year 1, month 1; year 1, month 2-4;
year 1, month 5-12; year 2, month 1-12; year 2-5, month 1-12; year 6-9, month 1-12. Fullini - red, AnoIni - pink
and UHcorr - blue.
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influence on the ENSO variability, which is discussed for thepresent model system inMagnusson et al.
(2011).

Comparing the forecast quality for ENSO prediction (SST indices) on seasonal time-scales, the best
results are obtained using momentum-flux correction. The worst results are found with the anomaly
initialisation, especially in the western part of the tropical Pacific. For the second half of the first year,
the worst scores are found for the heat and momentum-flux corrected experiment. This could be related
to erroneously triggering of El Niño events, for which we have found evidence by studying the model
drift of this experiment.

Comparing precipitation scores for the tropical Pacific, wesee a clear disadvantage for the anomaly
initialisation. By avoiding the model drift, the mean statefor the anomaly initialisation experiment is
always in a cold state. The SST bias leads to a strong supression of the convective precipitation. Even
with a warm SST anomaly, the SST is too cold to trigger convection. Here we have a clear advantage for
the flux-corrected experiment, which is closer to the observed mean state and has a better precipitation
response to warm events [c.f. discussion inMagnusson et al.(2011)].

Looking at decadal time-scales and comparing full initialisation, anomaly initialisation and heat- and
momentum-flux correction, even with a clear difference in mean climate, the differences in scores are
small and uncertain due to a limited set of hindcasts. For thedetrended data, some skill is present for the
northern Atlantic, tropical Pacific and southern Indian Ocean for year 2-5. However, it is hard to verify
any systematic differences between the experiments on thistime scale.

All methods investigated in this report have advantages anddisadvantages, both with regard to results
and from a practical point of view. By using full initialisation the model will drift from the attractor of
the analysis to the attractor of the model. During this driftthe properties of the forecasts change with
lead time, both in the sense of mean and variability. In orderto correct for this one needs to apply a
lead-time dependent bias correction. The development of the bias might well depend on the state (i.e.
be conditional), and optimally one should account for this,although sampling considerations are an
obstacle. In this study we found evidence of ”over-shooting” model drift in the eastern Pacific at certain
forecast ranges.

The anomaly initialisation removes most of the model drift in the global SST and a large part of the model
drift in the ocean heat content. The skill in the ENSO forecasts indicates that the anomalies are initialised
correctly, altought the scores are worse than using full initialisation. By using the anomaly initialisation
the model is always in an erroneous state. It severely affects interactions in the climate system, as seen for
the ENSO variability inMagnusson et al.(2011) and the precipitation scores for Niño3.4 in this report.
For a practical point of view, long simulations are needed toobtain the model climate. The main problem
is, however, the limited period for which the analysed climate can be defined, due to limitations in past
ocean observations.

The momentum-flux correction is mainly aimed to compensate for the wind bias in the tropical Pacific,
even if the correction is applied globally. For the mean climate and the skill scores for the tropical Pacific
we see a clear improvement. This is also documented inMolteni et al.(2011), for a slightly different
model configuration. Using the combined heat and momentum-flux correction, the mean climate as well
as the variability is well improved. However, it is difficultto see improvement in the scores. The practical
downside of flux correction is the estimation of the corrections. This is not straight-forward, especially
for a combination of heat and momentum-flux correction.

In this study we have not found clear evidence for any universal and easy solution for forecasting in the
presence of systematic error. Flux correction (especiallymomentum-flux correction) has a positive effect
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on the seasonal time-scale for the model system used here, but this result is highly dependent on the type
of systematic errors in the model and may not hold true for other models. For the decadal time-scale
only small differences are present between the strategies and no strategy shows a clear advantage. This
could be related to the limited sample of starting dates and the limited scope for predictability on this
time scales, once the effect of increased greenhouse gases has been removed. It is still an open question
as to whether the choice of forecast strategy matters for thedecadal time scale.
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